N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Let be the smallest Tour length for points in a -D Hypercube. Then there exists a smallest
constant such that for all optimal Tours in the Hypercube,
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
(8) |
(9) |
(10) |
(11) |
Now consider the constant
(12) |
(13) |
A certain self-avoiding Space-Filling Curve is an optimal Tour through a set of points, where can be
arbitrarily large. It has length
(14) |
References
Beardwood, J.; Halton, J. H.; and Hammersley, J. M. ``The Shortest Path Through Many Points.''
Proc. Cambridge Phil. Soc. 55, 299-327, 1959.
Chartrand, G. ``The Salesman's Problem: An Introduction to Hamiltonian Graphs.'' §3.2 in Introductory Graph Theory.
New York: Dover, pp. 67-76, 1985.
Fejes Tóth, L. ``Über einen geometrischen Satz.'' Math. Zeit. 46, 83-85, 1940.
Few, L. ``The Shortest Path and the Shortest Road Through Points.'' Mathematika 2, 141-144, 1955.
Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/sales/sales.html
Flood, M. ``The Travelling Salesman Problem.'' Operations Res. 4, 61-75, 1956.
Goddyn, L. A. ``Quantizers and the Worst Case Euclidean Traveling Salesman Problem.'' J. Combin. Th. Ser. B 50, 65-81, 1990.
Kabatyanskii, G. A. and Levenshtein, V. I. ``Bounds for Packing on a Sphere and in Space.'' Problems
Inform. Transm. 14, 1-17, 1978.
Karloff, H. J. ``How Long Can a Euclidean Traveling Salesman Tour Be?'' SIAM J. Disc. Math. 2, 91-99, 1989.
Moran, S. ``On the Length of Optimal TSP Circuits in Sets of Bounded Diameter.'' J. Combin. Th. Ser. B 37, 113-141, 1984.
Moscato, P. ``Fractal Instances of the Traveling Salesman Constant.''
http://www.ing.unlp.edu.ar/cetad/mos/FRACTAL_TSP_home.html
Steele, J. M. and Snyder, T. L. ``Worst-Case Growth Rates of Some Classical Problems of Combinatorial
Optimization.'' SIAM J. Comput. 18, 278-287, 1989.
Verblunsky, S. ``On the Shortest Path Through a Number of Points.'' Proc. Amer. Math. Soc. 2, 904-913, 1951.
© 1996-9 Eric W. Weisstein