An Algorithm which finds a Polynomial recurrence for terminating Hypergeometric Identities of the form
See also Binomial Series, Gosper's Algorithm, Hypergeometric Identity, Sister Celine's Method, Wilf-Zeilberger Pair
References
Krattenthaler, C. ``HYP and HYPQ: The Mathematica Package HYP.''
http://radon.mat.univie.ac.at/People/kratt/hyp_hypq/hyp.html.
Paule, P. and Riese, A. ``A Mathematica -Analogue of Zeilberger's Algorithm Based on an
Algebraically Motivated Approach to -Hypergeometric Telescoping.'' In Special Functions,
-Series and Related Topics, Fields Institute Communications 14, 179-210, 1997.
Paule, P. and Schorn, M. ``A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities.''
J. Symb. Comput. 20, 673-698, 1995.
Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. ``Zeilberger's Algorithm.'' Ch. 6 in A=B.
Wellesley, MA: A. K. Peters, pp. 101-119, 1996.
Riese, A. ``A Generalization of Gosper's Algorithm to Bibasic Hypergeometric Summation.'' Electronic J. Combinatorics 1, R19 1-16, 1996.
http://www.combinatorics.org/Volume_1/volume1.html#R19.
van der Poorten, A. ``A Proof that Euler Missed... Apéry's Proof of the Irrationality of .''
Math. Intel. 1, 196-203, 1979.
Wegschaider, K. Computer Generated Proofs of Binomial Multi-Sum Identities. Diploma Thesis, RISC. Linz, Austria: J. Kepler
University, May 1997.
Zeilberger, D. ``Doron Zeilberger's Maple Packages and Programs: EKHAD.''
http://www.math.temple.edu/~zeilberg/programs.html.
Zeilberger, D. ``A Fast Algorithm for Proving Terminating Hypergeometric Series Identities.'' Discrete Math. 80, 207-211, 1990.
Zeilberger, D. ``A Holonomic Systems Approach to Special Function Identities.'' J. Comput. Appl. Math. 32, 321-368, 1990.
Zeilberger, D. ``The Method of Creative Telescoping.'' J. Symb. Comput. 11, 195-204, 1991.
© 1996-9 Eric W. Weisstein