An abundant number is an Integer which is not a Perfect Number and for which
(1) |
There are only 21 abundant numbers less than 100, and they are all Even. The first Odd abundant number is
(2) |
(3) |
Define the density function
(4) |
(5) |
(6) |
A number which is abundant but for which all its Proper Divisors are Deficient is called a Primitive Abundant Number (Guy 1994, p. 46).
See also Aliquot Sequence, Deficient Number, Highly Abundant Number, Multiamicable Numbers, Perfect Number, Practical Number, Primitive Abundant Number, Weird Number
References
Deléglise, M. ``Encadrement de la densité des nombres abondants.'' Submitted.
Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality.
New York: Chelsea, pp. 3-33, 1952.
Erdös, P. ``On the Density of the Abundant Numbers.'' J. London Math. Soc. 9, 278-282, 1934.
Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/abund/abund.html
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 45-46, 1994.
Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem.
New York: Walker, pp. 11 and 13, 1997.
Sloane, N. J. A. Sequence
A005101/M4825
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
Wall, C. R. ``Density Bounds for the Sum of Divisors Function.'' In The Theory of Arithmetic Functions
(Ed. A. A. Gioia and D. L. Goldsmith). New York: Springer-Verlag, pp. 283-287, 1971.
Wall, C. R.; Crews, P. L.; and Johnson, D. B. ``Density Bounds for the Sum of Divisors Function.''
Math. Comput. 26, 773-777, 1972.
Wall, C. R.; Crews, P. L.; and Johnson, D. B. ``Density Bounds for the Sum of Divisors Function.''
Math. Comput. 31, 616, 1977.
© 1996-9 Eric W. Weisstein