info prev up next book cdrom email home

Mittenpunkt

\begin{figure}\begin{center}\BoxedEPSF{Mittenpunkt.epsf}\end{center}\end{figure}

The Lemoine Point of the Excentral Triangle, i.e., the point of concurrence $M$ of the lines from the Excenters $J_i$ through the corresponding Triangle side Midpoint $M_i$. It is also called the Middlespoint and has Triangle Center Function

\begin{displaymath}
\alpha=b+c-a={\textstyle{1\over 2}}\cot A.
\end{displaymath}

See also Excenter, Excentral Triangle, Nagel Point


References

Baptist, P. Die Entwicklung der Neueren Dreiecksgeometrie. Mannheim: Wissenschaftsverlag, p. 72, 1992.

Eddy, R. H. ``A Generalization of Nagel's Middlespoint.'' Elem. Math. 45, 14-18, 1990.

Kimberling, C. ``Central Points and Central Lines in the Plane of a Triangle.'' Math. Mag. 67, 163-187, 1994.

Kimberling, C. ``Mittenpunkt.'' http://cedar.evansville.edu/~ck6/tcenters/class/mitten.html.




© 1996-9 Eric W. Weisstein
1999-05-26