A 1-D Map often called ``the'' quadratic map is defined by
|
(1) |
This is the real version of the complex map defining the Mandelbrot Set. The quadratic map is called attracting if the
Jacobian , and repelling if . Fixed Points occur when
|
(2) |
|
(3) |
|
(4) |
Period two Fixed Points occur when
|
(6) |
|
(7) |
Period three Fixed Points occur when
|
|
|
(8) |
The most general second-order 2-D Map with an elliptic fixed point at the origin has the form
The map must have a Determinant of 1 in order to be Area preserving, reducing
the number of independent parameters from seven to three. The map can then be put in a
standard form by scaling and rotating to obtain
The inverse map is
The Fixed Points are given by
|
(15) |
for , ..., .
See also Bogdanov Map, Hénon Map, Logistic Map,
Lozi Map, Mandelbrot Set
© 1996-9 Eric W. Weisstein
1999-05-25