info prev up next book cdrom email home

Zeta Function

A function satisfying certain properties which is computed as an Infinite Sum of Negative Powers. The most commonly encountered zeta function is the Riemann Zeta Function,

\begin{displaymath}
\zeta(n)\equiv \sum_{k=1}^\infty {1\over k^n}.
\end{displaymath}

See also Dedekind Function, Dirichlet Beta Function, Dirichlet Eta Function, Dirichlet L-Series, Dirichlet Lambda Function, Epstein Zeta Function, Jacobi Zeta Function, Nint Zeta Function, Prime Zeta Function, Riemann Zeta Function


References

Ireland, K. and Rosen, M. ``The Zeta Function.'' Ch. 11 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 151-171, 1990.




© 1996-9 Eric W. Weisstein
1999-05-26