黄博士网: 在线数学手册软件,电化学虚拟实验室,虚拟电化学工作站,电化学软件 关于 | 科学 | 数学 | 手册 | 软件 | 计算器 | 电化学 | 虚拟实验室 | 帮助 | 论坛 | 联系 | English

数列求和(二)

\[ 1 - 2 + 3 - \cdots + \left( { - 1} \right)^{n - 1} n = \left\{ {\begin{array}{*{20}c} {\frac{1}{2}\left( {n + 1} \right)n,n为奇数} \\ { - \frac{n}{2},n为偶数} \\ \end{array}} \right. \]

\[ 1^2 - 2^2 + 3^2 - \cdots + \left( { - 1} \right)^{n - 1} n^2 = \left( { - 1} \right)^{n - 1} \frac{1}{2}n\left( {n + 1} \right) \]

\[ 1^3 - 2^3 + 3^3 - \cdots + \left( { - 1} \right)^{n - 1} n^3= \left\{ {\begin{array}{*{20}c} {\frac{1}{4}\left( {2n - 1} \right)\left( {n + 1} \right)^2 ,n为奇数} \\ { - \frac{1}{4}n^2 \left( {2n + 3} \right),n为偶数} \\ \end{array}} \right. \]

\[ 1^4 - 2^4 + 3^4 - \cdots + \left( { - 1} \right)^{n - 1} n^4 = \left( { - 1} \right)^{n - 1} \frac{1}{2}n\left( {n + 1} \right)\left( {n^2 + n - 1} \right) \]




参阅


Copyright 2000-2017 DrHuang.com