Loading [MathJax]/extensions/tex2jax.js
 黄博士网: 教育网, AI数学手册计算器软件,电化学虚拟实验室,虚拟电化学工作站,电化学软件 首页 | 目录 | 世界 | 学科 | 文科 | 科学 | 数学 | 物理 | 化学 | 医学 | 计算 | 软件 | 帮助 | 打赏
+ + + =

组合

通常意义下的组合

n个不同的元素中,每次取出k个不同的元素,不管其顺序合并成一组,称为组合.其组合种数为 \[ C_n^k = \frac{{A_n^k }}{{k!}} = \frac{{n!}}{{\left( {n - k} \right)!k!}} \] 其中\[ C_n^k 也记作\left( {\begin{array}{*{20}c} n \\ k \\ \end{array}} \right) \]

多组组合

n个不同的元素分成m组,第i组有ni个不同的元素,即n1+n2+…+nm=n,这样分组的种数为 \[ C_n^{n_1 ,n_2 ,n_3 , \cdots ,n_m } = \frac{{n!}}{{n_1 !n_2 ! \cdots n_m !}} \] 通常意义下的组合是其特例.

有重复的组合

n个不同元素中,每次取出k个元素,允许重复,不管其顺序合并成一组,这种组合称为有重复的组合,其组合种数为 \[ C_n^k = C_{n + k - 1}^k \]

组合公式

\[ C_n^k = \frac{n}{k}C_{n - 1}^{k - 1} = \frac{{k + 1}}{{n + 1}}C_{n + 1}^{k + 1} = \frac{{k + 1}}{{n - k}}C_n^{k + 1} = \frac{n}{{n - k}}C_{n - 1}^k \] \[ C_n^k = C_n^{n - k} \] \[ C_{n + 1}^k = C_n^k + C_n^{k - 1} \] \[ C_{n + 1}^k = \sum\limits_{j = 0}^k {C_{n - j}^{k - j} } \] \[ C_{n + k + 1}^{n + 1} = \sum\limits_{j = 0}^k {C_{n + j}^n } \] \[ C_{m + n}^k = \sum\limits_{j = 0}^k {C_m^j C_n^{k - j} } \] \[ \begin{array}{l} \sum\limits_{j = 0}^k {C_n^j } = 2^n \\ \left( { - 1} \right)^k C_{n - 1}^k = \sum\limits_{j = 0}^k {\left( { - 1} \right)^j } C_n^j \\ \sum\limits_{j = 0}^n {\left( { - 1} \right)^j C_{2n + 1}^j } = \left( { - 1} \right)^n \frac{{\left( {2n} \right)!}}{{\left( {n!} \right)^2 }} \\ \sum\limits_{j = 0}^n {jC_n^j } = n2^{n - 1} \\ \sum\limits_{j = 0}^n {\left( { - 1\,} \right)^{j + 1} jC_n^j = 0} \\ \sum\limits_{j = 0}^n {j^2 C_n^j = 2^{n - 2} n\left( {n + 1} \right)} \\ \end{array} \] \[ \begin{array}{l} \sum\limits_{j = 1}^k {j^3 C_n^j } = 2^{n - 3} n^2 \left( {n + 3} \right) \\ \sum\limits_{j = 0}^k {\frac{1}{{j + 1}}C_n^j } = \frac{{2^{n + 1} - 1}}{{n + 1}} \\ \sum\limits_{j = 0}^k {\frac{{\left( { - 1} \right)^{j + 1} }}{{j + 1}}C_n^j } = - \frac{1}{{n + 1}} \\ \sum\limits_{j = 0}^k {\frac{{\left( { - 1} \right)^j }}{{j + 1}}C_n^j = \frac{{\left( {2n} \right)!!}}{{\left( {2n + 1} \right)!!}}} \\ \sum\limits_{j = 0}^k {\left( {C_n^j } \right)^2 = \frac{{\left( {2n} \right)!}}{{\left( {n!} \right)^2 }}} \\ \sum\limits_{j = 0}^n {\left( { - 1} \right)^j \left( {C_n^j } \right)^2 } = \left\{ {\begin{array}{*{20}c} {\left( { - 1} \right)^m \frac{{\left( {2m} \right)!}}{{\left( {m!} \right)^2 }},} & {n = 2m} \\ {0,} & {n = 2m + 1} \\ \end{array}} \right. \\ \end{array} \] \[ \begin{array}{l} \sum\limits_{j = 0}^n {j\left( {C_n^j } \right)^2 = \frac{{\left( {2n - 1} \right)!}}{{\left[ {\left( {n - 1} \right)!} \right]^2 }}} \\ \sum\limits_{j = 0}^{n - k} {C_n^j C_n^{k + j} } = C_{2n}^{n - k} = \frac{{\left( {2n} \right)!}}{{\left( {n - k} \right)!\left( {n + k} \right)!}} \\ \sum\limits_{j = 0}^n {C_n^j C_m^j } = C_{n + m}^n \\ \sum\limits_{j = 0}^{\left[ {\frac{n}{2}} \right]} {C_n^{2j} } = 2^{n - 1} \\ \sum\limits_{j = 0}^{\left[ {\frac{{n - 1}}{2}} \right]} {C_n^{2j + 1} } = 2^{n - 1} \\ \sum\limits_{j = 0}^{\left[ {\frac{n}{2}} \right]} {\left( { - 1} \right)^j C_n^{2j} = 2^{\frac{\pi }{2}} } \cos \frac{{n\pi }}{4} \\ \end{array} \] \[ \begin{array}{l} \sum\limits_{j = 0}^{\left[ {\frac{{n - 1}}{2}} \right]} {\left( { - 1} \right)^j C_n^{2j + 1} } = 2^{\frac{n}{2}} \sin \frac{{n\pi }}{4} \\ \sum\limits_{j = 0}^n {\left( {n - 2j} \right)^2 C_n^j = n2^n } \\ \sum\limits_{j = 0}^n {\left( { - 1} \right)^j \left( {n - 2j} \right)^2 C_n^j = \left\{ {\begin{array}{*{20}c} {0,} & {n \ne 2} \\ {8,} & {n = 2} \\ \end{array}} \right.} \\ \sum\limits_{j = 1}^n {C_{\alpha + j - 1}^j = \frac{{\left( {a + 1} \right)\left( {a + 2} \right) \cdots \left( {a + n} \right)}}{{n!}} - 1} \\ \sum\limits_{j = 0}^n {\frac{{\left( { - 1} \right)^j }}{{a + j}}C_n^j } = \begin{array}{*{20}c} {\frac{{n!}}{{a\left( {a + 1} \right) \cdots \left( {a + n} \right)}}} & {} & {\left( {a \ne 0, - 1, - 2, \cdots , - n} \right)} \\ \end{array} \\ \begin{array}{*{20}c} {C_n^{n_1 ,n_2 , \cdots ,n_m } \le m^n } & {} & {\left( {n = n_1 + n_2 + \cdots n_m ,1 \le m \le n} \right)} \\ \end{array} \\ \end{array} \]



问题

请发到 论坛
参阅
  1. 数学 - 数学符号 - 数学索引
  2. 手册 = 初中数学手册 + 高中数学手册 + 数学手册 + 实用数学手册
  3. 初等数学 = 小学数学 + 中学数学 ( 初中数学 + 高中数学 )
  4. 高等数学 = 基础数学 ( 代数 + 几何 + 分析 ) + 应用数学
  5. 公式 - 定理 - - 函数图 - 曲线图 - 平面图 - 立体图 - 动画 - 画画
  6. 书单 = 数学 + 物理 + 化学 + 计算 + 医学 + 英语 + 教材 - QQ群下载书
  7. 数学手册计算器 = 数学 + 手册 + 计算器 + 计算机代数系统
  8. 检测 - 例题 :

`(d^0.5y)/dx^0.5 = sin(x-1)*sin(y-1) ` == ? `(d^0.5y)/dx^0.5 -cosh(y)-sinh(y)=0 ` == ? `(d^1.6y)/(dx^1.6)-int y(x) (dx)^(0.8)-y-exp(x)=0` == ? `int y(x) (dx)^0.5 -y-exp(x)`=0 == ? `(d^0.5y)/dx^0.5-exp(y)*x=0` == ? `(d^0.5y)/dx^0.5-exp(y)*y=0` == ? `(d^0.5y)/dx^0.5=cos(x)/x*y` == ? `y*(dy^0.5)/dx^0.5-sqrt(x)-1=0` == ? `(d^1.2y)/(dx^1.2)-2(d^0.6y)/dx^0.6+y-exp(x)=0` == ? `(d^0.5y)/dx^0.5=cos(y)*exp(x)*x` == ? `(d^1.6y)/(dx^1.6)-2(d^0.8y)/dx^0.8+y-exp(x)=0` == ? `(d^0.5y)/dx^0.5-exp(y)*sqrt(x)=0` == ? `(d^1.6y)/(dx^1.6)-3 (d^0.8y)/dx^0.8+2y-exp(x)=0` == ? `(d^0.5y)/dx^0.5` +log(y-1)-exp(x)-x=0 == ? `(d^0.5y)/dx^0.5-exp(y)*sin(x)=0` == ? `(d^0.5y)/dx^0.5 = y*sin(x)/x ` == ? `y^((0.5))(x) -4 exp(x)*y-exp(x)=0` == ? `(dy^0.5)/dx^0.5 = 1/(x-y)` == ? `dy/dx-(d^0.5y)/dx^0.5` - y - exp(x)=0 == ? `(dy)/dx -exp(y-1)-x-x^2=0` == ? `(d^1.2y)/(dx^1.2)-3dy^0.6/dx^0.6+2y-exp(x)=0` == ? `dy/dx-(d^0.5y)/dx^0.5-y-1`=0 == ? `(d^0.5y)/dx^0.5-cos(y)*sin(x)=0` == ? `(d^1.6y)/(dx^1.6)-(d^0.8y)/dx^0.8-y-exp(4x)=0` == ? `dy/dx-exp(y-1)-exp(x)=0` == ? `(dy)/dx - 2(d^0.5y)/dx^0.5-y-exp(x)=0` == ? `(d^1.6y)/(dx^1.6)-(d^0.8y)/dx^0.8-y-exp(x)=0` == ? `(d^0.5y)/dx^0.5 -e^(4x)-y`=0 == ? `y^((0.5))(x) - exp(x)*y-exp(x)=0` == ? `y^((0.5))(x) - exp(x)*y-4exp(x)=0` == ? `(dy)/dx -3(d^0.5y)/dx^0.5 +2y-exp(x)=0` == ? `y*(d^0.5y)/dx^0.5-sqrt(x)-1=0` == ? `y^((1))(x)-exp(y-1)-x=0` == ? `(d^1.6y)/(dx^1.6)-(d^0.8y)/dx^0.8-2y-exp(x)=0` == ? `(d^1.6y)/(dx^1.6)-(d^0.8y)/dx^0.8-y-exp(4x)=0` == ? `(d^0.5y)/dx^0.5 - log(y-1) - exp(x) + x=0` == ? `(dy)/dx +asin(y-1) - cos(x)-x=0` == ? `(d^1.6y)/(dx^1.6)-3(d^0.8y)/dx^0.8+2y-exp(x)=0` == ? `(dy)/(dx) -sqrt(y-1)-x-1 =0` == ? ` (dy)/(dx) -exp(y-1)-exp(x) = 0` == ? `(dy)/dx` +asinh(y-1)-cosh(x)-x =0 == ? `((d^(1/2)y)/dx^(1/2))^2 -3y* (dy^0.5)/dx^0.5 + 2y^2 = 0` == ? `(dy^0.5)/dx^0.5 = cos(x)*cos(y-1)` == ? `(d^0.5y)/dx^0.5 +log(y-1)-exp(x)-x=0` == ? `(dy^0.5)/dx^0.5 = sin(x-1)*exp(y-1)` == ? `y*(d^2y)/dx^2-(dy/dx)^2+1=0` == ? `y^((1))(x)-exp(y-1)-log(x)=0` == ? `(d^2y)/dx^2 *exp(x)- exp(y-1)=0` == ? `(d^1.6y)/(dx^1.6)-2 (d^0.8y)/dx^0.8-y-exp(x)=0` == ? `(d^1.6y)/(dx^1.6)-2 (d^0.8y)/dx^0.8+y-exp(x)=0` == ? `(dy)/dx -3 (d^0.5y)/dx^0.5+2y-exp(x)=0` == ? `y^((0.5))(x) - x*y-x=0` == ? `y*(dy^3)/dx^3-x^3-3x^2-3x-1=0` == ? `y^((1.8))(x)-2y^((0.9))(x) +y-1=0` == ? `y^((0.5))(x)=1/(x*y-1)` == ? `y^((2))(x)*y^2-x^2-2x-1=0` == ? `((d^0.5y)/dx^0.5)^2 -5(d^0.5y)/dx^0.5 +6=0` == ? `y^((0.5))(x) -2 exp(x)*y-4exp(x)=0` == ? `(d^1.6y)/(dx^1.6)-(d^0.8y)/dx^0.8-y-exp(x)=0` == ? `y^(0.5)(x)=2y*exp(x)` == ? `y^((0.5))(x)-exp(x)*y^2=0` == ? `(d^1.6y)/(dx^1.6)-2(d^0.8y)/dx^0.8+y-exp(x)=0` == ? `y^((1))(x)-y^2-x*y=0` == ? `y^((1))(x)-y^((0.5))(x) -y-1=0` == ? `y^((2))(x) -y^2-x^2=0` == ? `y^((2))(x) -y^2-x^2-2x*y=0` == ? `y^((0.5))(x) -int y(x) (dx)^0.5-y-exp(x)=0` == ? `d^0.5/dx^0.5 y -2cos(y)*exp(x)=0` == ? `d^0.5/dx^0.5 y -4sin(y)*exp(x)=0` == ? `(d^0.5y)/dx^0.5=sin(x^2)*y` == ? `(d^0.5y)/dx^0.5-sin(x)*sin(y)=0` == ? `(d^0.5y)/dx^0.5-sinh(x)*sinh(y)=0` == ? `y^((1))(x)=exp(x-y)-x` == ? `x*(d^0.5y)/dx^0.5-y-2x=0` == ? `(d^0.5y)/dx^0.5=sinh(x-1)*sinh(y-1)` == ? `y^((0.5))(x)-exp(-x)*y^2=0` == ? `(d^0.5y)/dx^0.5=y/x*sin(x)` == ? `(dy)/dx-sin(x-y)-1=0` == ? `(d^2.5y)/dx^2.5=y*(d^0.5y)/dx^0.5` == ? `(d^0.5y)/dx^0.5=y*(dy)/dx` == ? `(d^(2-i)y)/dx^(2-i)- y+x=0` == ? `(d^2y)/dx^2=y^3*x^2` == ? `y*(d^2y)/dx^2-x^2-3x-1=0` == ? `y*(d^2y)/dx^2-2x^2-3x-1=0` == ? `(y-x-1)*(d^2y)/dx^2-3x-1=0` == ? `y^2*(d^2y)/dx^2-x^2-4x-4=0` == ? `(y-x-1)*(d^2y)/dx^2-x^2-4x-4=0` == ? `y*(d^2y)/dx^2-2x^2-2x-1=0` == ? `y*(d^3y)/dx^3-6x^3-3x^2-3x-1=0` == ? `y^((0))(x)*y^((1))(x)*y^((2))(x)=x^2` == ? `y^((3))(x)*y^((2))(x)=y^((1/2))(x)` == ? `y^((3))(x)=exp(x)*y^((1))(x)*y^((1/2))(x)` == ? `y^((1/2))(x)*y^((3))(x)=exp(x)` == ? `y^((1/2))(x)*y^((2))(x)=exp(x)` == ? `(d^0.5y)/dx^0.5-2x*y-1=0` == ? `y^2*(d^0.5y)/dx^0.5-x^2-4x-4=0` == ? `exp(y-1)*(d^0.5y)/dx^0.5-x=0` == ? `y*(d^2y)/dx^2-(x-2)*(2x-4)=0` == ? `y*(d^3y)/dx^3-6x^3-4x^2-4x-1=0` == ? `exp(y-1)*(d^2y)/dx^2-exp(x)=0` == ? `y^2*(d^2y)/dx^2-x^2-1=0` == ? `1/y^2*(d^2y)/dx^2-x^2-1=0` == ? `(y-x-1)*(d^3y)/dx^3-(x-2)*(2x-4)*(3x-1)=0` == ? `(d^0.5y)/dx^0.5-2x^2*y^2-8x^2=0` == ? `(d^0.5y)/dx^0.5-2x*y^2-8x=0` == ? `(d^0.5y)/dx^0.5-y^2-2y-2=0` == ? `(d^0.5y)/dx^0.5-log(y-1)*exp(x)=0` == ? `y*(d^2y)/dx^2-(dy/dx)^2-1=0` == ? `(d^2y)/dx^2-asin(y-1)-sin(x)-x=0` == ? `dy/dx*(x--y)-x--y-1 = 0` == ?


首页 | 目录 | 论坛 | 联系 | 版权 | 关于 | 书单 | 索引 | 帮助 | ? | English