\[ \sin ^2 \alpha = \frac{1}{2}\left( {1 - \cos 2\alpha } \right) \] \[ \sin ^3 \alpha = \frac{1}{4}\left( {3\sin \alpha - \sin 3\alpha } \right) \] \[ \sin ^4 \alpha = \frac{1}{8}\left( {3 - 4\cos 2\alpha - \cos 4\alpha } \right) \] \[ \sin ^{2n} \alpha = \frac{1}{{2^{2n - 1} }}\left( {\sum\limits_{k = 0}^{n - 1} {\left( { - 1} \right)^{n + k} C_{2n}^k \cos \left( {2n - 2k} \right)\alpha + \frac{1}{2}C_{2n}^n } } \right) \] \[ \sin ^{2n + 1} \alpha = \frac{1}{{2^{2n} }}\sum\limits_{k = 0}^n {\left( { - 1} \right)^{n + k} C_{2n + 1}^k \sin \left( {2n - 2k + 1} \right)\alpha } \] \[ \cos ^2 \alpha = \frac{1}{2}\left( {1 + \cos 2\alpha } \right) \] \[ \cos ^3 \alpha = \frac{1}{4}\left( {3\cos \alpha + \cos 3\alpha } \right) \] \[ \cos ^4 \alpha = \frac{1}{8}\left( {3 + 4\cos 2\alpha + \cos 4\alpha } \right) \] \[ \cos ^{2n} \alpha = \frac{1}{{2^{2n - 1} }}\left[ {\sum\limits_{k = 0}^{n - 1} {C_{2n}^k \cos \left( {2n - 2k} \right)\alpha + \frac{1}{2}C_{2n}^n } } \right] \] \[ \cos ^{2n + 1} \alpha = \frac{1}{{2^{2n} }}\sum\limits_{k = 0}^n {C_{2n + 1}^k \cos \left( {2n - 2k + 1} \right)\alpha } \] 以上式中的n为正整数.