黄博士网: 在线数学手册软件,电化学虚拟实验室,虚拟电化学工作站,电化学软件 关于 | 科学 | 数学 | 手册 | 软件 | 计算器 | 电化学 | 虚拟实验室 | 帮助 | 论坛 | 联系 | English

三角函数有限和公式

\[ \sum\limits_{j = 1}^{n - 1} {\sin \frac{{j\pi }}{n}} = \cot \frac{\pi }{{2n}} \] \[ \sum\limits_{j = 1}^n {\cos \frac{{\left( {2j - 1} \right)\pi }}{n}} = 0 \] \[ \sum\limits_{j = 1}^n {\cos \frac{{\left( {2j - 1} \right)\pi }}{{2n + 1}}} = \frac{1}{2} \] \[ \sum\limits_{j = 1}^{n - 1} {\sin \frac{{2j^2 \pi }}{n}} = \frac{{\sqrt n }}{2}\left( {1 + \cos \frac{{n\pi }}{2} - \sin \frac{{n\pi }}{2}} \right) \] \[ \sum\limits_{j = 1}^{n - 1} {\cos \frac{{2j^2 \pi }}{n}} = \frac{{\sqrt n }}{2}\left( {1 + \cos \frac{{n\pi }}{2} + \sin \frac{{n\pi }}{2}} \right) - 1 \] \[ \sum\limits_{j = 1}^n {\cot ^2 \frac{{j\pi }}{{2n + 1}}} = \frac{1}{3}n\left( {2n - 1} \right) \] \[ \sum\limits_{j = 1}^n {\cot ^2 \frac{{\left( {2j - 1} \right)\pi }}{{4n}}} = n\left( {2n - 1} \right) \] \[ \sum\limits_{j = 1}^n {\sec ^2 \frac{{\left( {4j - 3} \right)\pi }}{{4n}}} = 2n^2 \] \[ \sum\limits_{j = 1}^{\left[ {\frac{{n + 1}}{2}} \right] - 1} {\csc ^2 \frac{{j\pi }}{n}} = \left\{ {\begin{array}{*{20}c} {\frac{1}{6}\left( {n^2 - 1} \right),} & {n为奇数} \\ {\frac{1}{6}\left( {n^2 - 4} \right),} & {n为偶数} \\ \end{array}} \right. \] \[ \sum\limits_{j = 1}^{\left[ {\frac{n}{2}} \right]} {\csc ^2 \frac{{\left( {2j - 1} \right)\pi }}{{2n}}} = \left\{ {\begin{array}{*{20}c} {\frac{1}{2}\left( {n^2 - 1} \right),} & {n为奇数} \\ {\frac{1}{2}n^2 ,} & {n为偶数} \\ \end{array}} \right. \] \[ \sum\limits_{j = 1}^{2n} {\csc ^2 \frac{{j\pi }}{{2n + 1}}} = \frac{4}{3}n\left( {n + 1} \right) \] \[ \sum\limits_{j = 1}^n {\tan ^4 \frac{{j\pi }}{{2n + 1}}} = \frac{1}{3}n\left( {2n + 1} \right)\left( {4n^2 + 6n - 1} \right) \] \[ \sum\limits_{j = 1}^n {\cot ^4 \frac{{j\pi }}{{2n + 1}}} = \frac{1}{{45}}n\left( {2n - 1} \right)\left( {4n^2 + 10n - 9} \right) \] 


参阅