[根与系数的关系] 设\[ f\left( x \right) = x^n + a_1 x^{n - 1} + \cdots + a_n \] 为复数域S上的一元多项式,x1,x2,…,xn为f(x)在S中的n个根,则根与系数的关系为 \[ x_1 + x_2 + \cdots + x_n = \sum\limits_{i = 1}^n {x_i } = - a_1 \] \[ x_1 x_2 + x_1 x_3 + \cdots + x_{n - 1} x_n = \sum\limits_{i,j = 1\left( {i < j} \right)}^n {x_i x_j} = a_2 \] \[ x_1 x_2 x_3 + x_1 x_2 x_4 + \cdots + x_{n - 2} x_{n - 1} x_n = \sum\limits_{i,j,k = 1\left( {i < j < k} \right)}^n {x_i x_j x_k } =- a_3 \] \[ \begin{array}{l} \cdots \cdots \cdots \cdots \\ x_1 x_2 \cdots x_n = \left( { - 1} \right)^n a_n \\ \end{array} \] 这就是说,f(x)的xn-k的系数ak等于从它的根x1,x2,…,xn中每次取k个(不同的)一切可能乘积之和,若k是偶数,则取正号,若k为奇数,则取负号.
[根的范围] 设ξ为复系数代数方程 \[ f\left( x \right) = a_0 x^n + a_1 x^{n - 1} + \cdots + a_{n - 1} x + a_n = 0 (1)\] 的根.
1°若所有系数ai≠0(i=0,1,…,n),则|ξ|≤σ,其中为实系数代数方程 \[ F\left( x \right) = \left| {a_0 } \right|x^n - \left| {a_1 } \right|x^{n - 1} - \cdots - \left| {a_n } \right| = 0 \] 的一个正实根.
2°设γ1,γ2,…,γn-1为任意正数,则|ξ|≤τ,其中τ为下列n个数中最大一个: \[ \frac{{\left| {a_1 } \right|}}{{\left| {a_0 } \right|}} + \frac{1}{{r_1 }},\frac{{\left| {a_2 } \right|}}{{\left| {a_0 } \right|}}r_1 + \frac{1}{{r_2 }}, \cdots ,\frac{{\left| {a_{n - 1} } \right|}}{{\left| {a_0 } \right|}}r_1 r_2 \cdots r_{n - 2} + \frac{1}{{r_{n - 1} }},\frac{{\left| {a_n } \right|}}{{\left| {a_0 } \right|}}r_1 r_2 \cdots r_{n - 1} \] 特别,取γi=1(i=1,2,…,n-1)时,有 \[ \left| \xi \right| \le \max \left\{ {\frac{{\left| {a_n } \right|}}{{\left| {a_0 } \right|}},1 + \frac{{\left| {a_1 } \right|}}{{\left| {a_0 } \right|}}, \cdots ,1 + \frac{{\left| {a_{n - 1} } \right|}}{{\left| {a_0 } \right|}}} \right\}(2) \] 方程(1)中作变换x=1/y,可求出|y|的上界,因而得到 \[ \left| \xi \right| \ge \left( {\max \left\{ {\frac{{\left| {a_n } \right|}}{{\left| {a_n } \right|}},1 + \frac{{\left| {a_1 } \right|}}{{\left| {a_n } \right|}}, \cdots ,1 + \frac{{\left| {a_{n - 1} } \right|}}{{\left| {a_n } \right|}}} \right\}} \right)^{ - 1}(3) \] 更进一步,记(2)式右边为M,记(3)式右边为m,如果取ρ<M,使得 \[ \left| {a_0 } \right|\rho ^n - \left| {a_1 } \right|\rho ^{n - 1} - \left| {a_2 } \right|\rho ^{n - 2} - \cdots - \left| {a_{n - 1} } \right|\rho - \left| {a_n } \right| > 0 \] 取ρ'>m,使得 \[ \left| {a_0 } \right|\rho '^n + \left| {a_1 } \right|\rho '^{n - 1} + \cdots + \left| {a_{n - 1} } \right|\rho ' - \left| {a_n } \right| < 0 \] 那么有ρ'≤|ξ|≤ρ.
3°设γ为任意正数,则|ξ|≤τ1,其中 \[ \tau _1 = \max \left\{ {\frac{1}{\gamma },\frac{{\left| {a_1 } \right|}}{{\left| {a_0 } \right|}} + \frac{{\left| {a_2 } \right|}}{{\left| {a_0 } \right|}}\gamma + \cdots + \frac{{\left| {a_1 } \right|}}{{\left| {a_0 } \right|}}\gamma ^{n - 1} } \right\} \] 特别,取γ=1,有 \[ \left| \xi \right| \le \max \left\{ {1,\frac{1}{{\left| {a_0 } \right|}}\sum\limits_{i = 1}^n {\left| {a_i } \right|} } \right\} \]
4°若所有系数都为正实数,则 \[ \min \left\{ {\frac{{a_1 }}{{a_0 }},\frac{{a_2 }}{{a_1 }}, \cdots ,\frac{{a_n }}{{a_{n - 1} }}} \right\} \le \left| \xi \right| \le \max \left\{ {\frac{{a_1 }}{{a_0 }},\frac{{a_2 }}{{a_1 }}, \cdots ,\frac{{a_n }}{{a_{n - 1} }}} \right\} \]
5°若方程(1)的系数满足不等式 \[ \left| {a_0 } \right| < \left| {a_1 } \right| - \left| {a_2 } \right| - \left| {a_3 } \right| - \cdots - \left| {a_n } \right| \] 则方程(1)至多有一个绝对值≥1的根ξ1,而且 \[ \left| {\xi _1 } \right| \ge \left| {a_1 } \right| - \left| {a_2 } \right| - \left| {a_3 } \right| - \cdots - \left| {a_n } \right| \]