Processing math: 100%
 黄博士网: 教育网, AI数学手册计算器软件,电化学虚拟实验室,虚拟电化学工作站,电化学软件 首页 | 目录 | 世界 | 学科 | 文科 | 科学 | 数学 | 物理 | 化学 | 医学 | 计算 | 软件 | 帮助 | 打赏
+ + + =

计算数学 = 数值计算方法 = 数值分析

计算数学是由数学、物理学计算机科学、运筹学与控制科学等学科交叉渗透而形成的一个理科专业。

科目门类

二级学科, 专业名称:计算数学,   门类/类别:理学     学科/类别:数学

三级学科

▪ 6110:插值法与逼近论 ▪ 6120:常微分方程数值解 ▪ 6130:偏微分方程数值解
▪ 6140:积分方程数值解 ▪ 6150:数值代数 ▪ 6160:连续问题离散化方法
▪ 6170:随机数值实验 ▪ 6180:误差分析 ▪ 6199:计算数学其他学科

专业定义

计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程 组、微分方程的数值解法,函数的数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性、收敛性和误差分析等理论问题。

五次及五次以上的代数方程不存在求根公式,因此,要求出五次以上的高次代数方程的解,一般只能求它的近似解,求近似解的方法就是数值分析的方法。对于一般的超越方程,如对数方程、三角方程等等也只能采用数值分析的办法。怎样找出比较简洁、误差比较小、花费时间比较少的计算方法是数值分析的主要课题。

在求解方程的办法中,常用的办法之一是迭代法,也叫做逐次逼近法。迭代法的计算是比较简单的,是比较容易进行的。迭代法还可以用来求解线性方程组的解。求方程组的近似解也要选择适当的迭代公式,使得收敛速度快,近似误差小。 在线性代数方程组的解法中,常用的有塞德尔迭代法、共轭斜量法、超松弛迭代法等等。此外,一些比较古老的普通消去法,如高斯法、追赶法等等,在利用计算机的条件下也可以得到广泛的应用。

在计算方法中,数值逼近也是常用的基本方法。数值逼近也叫近似代替,就 是用简单的函数去代替比较复杂的函数,或者代替不能用解析表达式表示的函数。数值逼近的基本方法是插值法。初等数学里的三角函数表,对数表中的修正值,就是根据插值法制成的。

在遇到求微分和积分的时候,如何利用简单的函数去近似代替所给的函数,以便容易求到和求积分,也是计算方法的一个主要内容。微分方程的数值解法也是近似解法。常微分方程的数值解法由欧拉法、预测校正法等。偏微分方程的初值问题或边值问题, 常用的是有限差分法、有限元素法等。有限差分法的基本思想是用离散的、只含有限个未知数的差分方程去代替连续变量的微分方程和定解条件。求出差分方程的解法作为求偏微分方程的近似解。

计算方法

插值法

借助于某量已知的个别值或与其有关的其他量来逼近或精确地寻求该量的一种方法。以插值为基础的解数学问题的一个完整的近似方法系列已经发展起来了。 计算数学中最重要的是对于函数的插值(Interpolation)的构造方法的问题泛函和算子的插值在构造计算方法中也已得到广泛的应用。函数的近似表示和计算,函数的插值视为逼近该函数的方法之一。

有限元素法

有限元素法是近代才发展起来的,它是以变分原理和剖分差值作为基础的方法。在解决椭圆形方程边值问题上得到了广泛的应用。有许多人正在研究用有限元素法来解双曲形和抛物形的方程。 计算数学的内容十分丰富,它在科学技术中正发挥着越来越大的作用。

研究范畴

计算问题可以说是现代社会各个领域普遍存在的共同问题,工业、农业、交通运输、医疗卫生、文化教育等等,哪一行哪一业都有许多数据需要计算,通过数据分析,以便掌握事物发展的规律。研究计算问题的解决方法和有关数学理论问题的一门学科就叫做计算数学。计算数学属于应用数学的范畴,它主要研究有关的数学和逻辑问题怎样由计算机加以有效解决。 模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。模糊数学是以不确定性的事物为其研究对象的。在模糊数学中,已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。

计算数学是研究各种计算问题的有效算法及其有关的数学理论问题,它的核心是提出和研究求解各种计算问题的高效而稳定算法。科学计算作为认识世界改造世界的一种重要手段,已与理论分析、科学实验共同成为当代科学研究的三大方法。 科学计算的核心是计算数学。计算数学主要研究与各类科学计算和工程计算相关的计算方法,对各种算法及其应用进行理论和数值分析,设计和研究用数值模拟方法来代替某些耗资巨大甚至是难以实现的实验,研制专用或通用科学工程应用软件和数值软件等。 近年来,计算数学与其它领域交叉渗透,形成了诸如计算力学计算物理计算化学、计算生物学等一批交叉学科, 在自然科学社会科学工程技术及国民经济的各个领域得到了日益广泛的应用。

Calculators 计算器

  • simple calculator
  • calculator = science calculator 计算器
  • function calculator = numeric calculator
  • math calcualtor = math handbook calculator = mathHandbook.com = mathHand.com
  • 数学手册计算器

    书单

  • 计算方法丛书
  • 计算数学丛书

    例题

    数学索引

    论坛

    相关条目

    计算科学 = 计算数学 + 计算物理学 + 计算化学 

    问题

    请发到 论坛
    参阅
    1. 数学 - 数学符号 - 数学索引
    2. 手册 = 初中数学手册 + 高中数学手册 + 数学手册 + 实用数学手册
    3. 初等数学 = 小学数学 + 中学数学 ( 初中数学 + 高中数学 )
    4. 高等数学 = 基础数学 ( 代数 + 几何 + 分析 ) + 应用数学
    5. 公式 - 定理 - - 函数图 - 曲线图 - 平面图 - 立体图 - 动画 - 画画
    6. 书单 = 数学 + 物理 + 化学 + 计算 + 医学 + 英语 + 教材 - QQ群下载书
    7. 数学手册计算器 = 数学 + 手册 + 计算器 + 计算机代数系统
    8. 检测 - 例题 :

    d0.5ydx0.5=sin(x-1)sin(y-1) == ? d0.5ydx0.5-cosh(y)-sinh(y)=0 == ? d1.6ydx1.6-y(x)(dx)0.8-y-exp(x)=0 == ? y(x)(dx)0.5-y-exp(x)=0 == ? d0.5ydx0.5-exp(y)x=0 == ? d0.5ydx0.5-exp(y)y=0 == ? d0.5ydx0.5=cos(x)xy == ? ydy0.5dx0.5-x-1=0 == ? d1.2ydx1.2-2d0.6ydx0.6+y-exp(x)=0 == ? d0.5ydx0.5=cos(y)exp(x)x == ? d1.6ydx1.6-2d0.8ydx0.8+y-exp(x)=0 == ? d0.5ydx0.5-exp(y)x=0 == ? d1.6ydx1.6-3d0.8ydx0.8+2y-exp(x)=0 == ? d0.5ydx0.5 +log(y-1)-exp(x)-x=0 == ? d0.5ydx0.5-exp(y)sin(x)=0 == ? d0.5ydx0.5=ysin(x)x == ? y(0.5)(x)-4exp(x)y-exp(x)=0 == ? dy0.5dx0.5=1x-y == ? dydx-d0.5ydx0.5 - y - exp(x)=0 == ? dydx-exp(y-1)-x-x2=0 == ? d1.2ydx1.2-3dy0.6dx0.6+2y-exp(x)=0 == ? dydx-d0.5ydx0.5-y-1=0 == ? d0.5ydx0.5-cos(y)sin(x)=0 == ? d1.6ydx1.6-d0.8ydx0.8-y-exp(4x)=0 == ? dydx-exp(y-1)-exp(x)=0 == ? dydx-2d0.5ydx0.5-y-exp(x)=0 == ? d1.6ydx1.6-d0.8ydx0.8-y-exp(x)=0 == ? d0.5ydx0.5-e4x-y=0 == ? y(0.5)(x)-exp(x)y-exp(x)=0 == ? y(0.5)(x)-exp(x)y-4exp(x)=0 == ? dydx-3d0.5ydx0.5+2y-exp(x)=0 == ? yd0.5ydx0.5-x-1=0 == ? y(1)(x)-exp(y-1)-x=0 == ? d1.6ydx1.6-d0.8ydx0.8-2y-exp(x)=0 == ? d1.6ydx1.6-d0.8ydx0.8-y-exp(4x)=0 == ? d0.5ydx0.5-log(y-1)-exp(x)+x=0 == ? dydx+asin(y-1)-cos(x)-x=0 == ? d1.6ydx1.6-3d0.8ydx0.8+2y-exp(x)=0 == ? dydx-y-1-x-1=0 == ? dydx-exp(y-1)-exp(x)=0 == ? dydx +asinh(y-1)-cosh(x)-x =0 == ? (d12ydx12)2-3ydy0.5dx0.5+2y2=0 == ? dy0.5dx0.5=cos(x)cos(y-1) == ? d0.5ydx0.5+log(y-1)-exp(x)-x=0 == ? dy0.5dx0.5=sin(x-1)exp(y-1) == ? yd2ydx2-(dydx)2+1=0 == ? y(1)(x)-exp(y-1)-log(x)=0 == ? d2ydx2exp(x)-exp(y-1)=0 == ? d1.6ydx1.6-2d0.8ydx0.8-y-exp(x)=0 == ? d1.6ydx1.6-2d0.8ydx0.8+y-exp(x)=0 == ? dydx-3d0.5ydx0.5+2y-exp(x)=0 == ? y(0.5)(x)-xy-x=0 == ? ydy3dx3-x3-3x2-3x-1=0 == ? y(1.8)(x)-2y(0.9)(x)+y-1=0 == ? y(0.5)(x)=1xy-1 == ? y(2)(x)y2-x2-2x-1=0 == ? (d0.5ydx0.5)2-5d0.5ydx0.5+6=0 == ? y(0.5)(x)-2exp(x)y-4exp(x)=0 == ? d1.6ydx1.6-d0.8ydx0.8-y-exp(x)=0 == ? y0.5(x)=2yexp(x) == ? y(0.5)(x)-exp(x)y2=0 == ? d1.6ydx1.6-2d0.8ydx0.8+y-exp(x)=0 == ? y(1)(x)-y2-xy=0 == ? y(1)(x)-y(0.5)(x)-y-1=0 == ? y(2)(x)-y2-x2=0 == ? y(2)(x)-y2-x2-2xy=0 == ? y(0.5)(x)-y(x)(dx)0.5-y-exp(x)=0 == ? d0.5dx0.5y-2cos(y)exp(x)=0 == ? d0.5dx0.5y-4sin(y)exp(x)=0 == ? d0.5ydx0.5=sin(x2)y == ? d0.5ydx0.5-sin(x)sin(y)=0 == ? d0.5ydx0.5-sinh(x)sinh(y)=0 == ? y(1)(x)=exp(x-y)-x == ? xd0.5ydx0.5-y-2x=0 == ? d0.5ydx0.5=sinh(x-1)sinh(y-1) == ? y(0.5)(x)-exp(-x)y2=0 == ? d0.5ydx0.5=yxsin(x) == ? dydx-sin(x-y)-1=0 == ? d2.5ydx2.5=yd0.5ydx0.5 == ? d0.5ydx0.5=ydydx == ? d2-iydx2-i-y+x=0 == ? d2ydx2=y3x2 == ? yd2ydx2-x2-3x-1=0 == ? yd2ydx2-2x2-3x-1=0 == ? (y-x-1)d2ydx2-3x-1=0 == ? y2d2ydx2-x2-4x-4=0 == ? (y-x-1)d2ydx2-x2-4x-4=0 == ? yd2ydx2-2x2-2x-1=0 == ? yd3ydx3-6x3-3x2-3x-1=0 == ? y(0)(x)y(1)(x)y(2)(x)=x2 == ? y(3)(x)y(2)(x)=y(12)(x) == ? y(3)(x)=exp(x)y(1)(x)y(12)(x) == ? y(12)(x)y(3)(x)=exp(x) == ? y(12)(x)y(2)(x)=exp(x) == ? d0.5ydx0.5-2xy-1=0 == ? y2d0.5ydx0.5-x2-4x-4=0 == ? exp(y-1)d0.5ydx0.5-x=0 == ? yd2ydx2-(x-2)(2x-4)=0 == ? yd3ydx3-6x3-4x2-4x-1=0 == ? exp(y-1)d2ydx2-exp(x)=0 == ? y2d2ydx2-x2-1=0 == ? 1y2d2ydx2-x2-1=0 == ? (y-x-1)d3ydx3-(x-2)(2x-4)(3x-1)=0 == ? d0.5ydx0.5-2x2y2-8x2=0 == ? d0.5ydx0.5-2xy2-8x=0 == ? d0.5ydx0.5-y2-2y-2=0 == ? d0.5ydx0.5-log(y-1)exp(x)=0 == ? yd2ydx2-(dydx)2-1=0 == ? d2ydx2-asin(y-1)-sin(x)-x=0 == ? dydx(x--y)-x--y-1=0 == ?


    首页 | 目录 | 论坛 | 联系 | 版权 | 关于 | 书单 | 索引 | 帮助 | ? | English