info prev up next book cdrom email home

Absolute Value

\begin{figure}\begin{center}\BoxedEPSF{Abs.epsf}\end{center}\end{figure}

\begin{figure}\begin{center}\BoxedEPSF{AbsReIm.epsf scaled 790}\end{center}\end{figure}

The absolute value of a Real Number $x$ is denoted $\vert x\vert$ and given by

\begin{displaymath}
\vert x\vert= x\mathop{\rm sgn}\nolimits (x) = \cases{
-x & for $x\leq 0$\cr
x & for $x\geq 0$,\cr}
\end{displaymath}

where Sgn is the sign function.


The same notation is used to denote the Modulus of a Complex Number $z=x+iy$, $\vert z\vert\equiv\sqrt{x^2+y^2}$, a p-adic Number absolute value, or a general Valuation. The Norm of a Vector ${\bf x}$ is also denoted $\vert{\bf x}\vert$, although $\vert\vert{\bf x}\vert\vert$ is more commonly used.


Other Notations similar to the absolute value are the Floor Function $\left\lfloor{x}\right\rfloor $, Nint function $[x]$, and Ceiling Function $\left\lceil{x}\right\rceil $.

See also Absolute Square, Ceiling Function, Floor Function, Modulus (Complex Number), Nint, Sgn, Triangle Function, Valuation




© 1996-9 Eric W. Weisstein
1999-05-25