info prev up next book cdrom email home

Coxeter's Loxodromic Sequence of Tangent Circles

An infinite sequence of Circles such that every four consecutive Circles are mutually tangent, and the Circles' Radii ..., $R_{-n}$, ..., $R_{-1}$, $R_0$, $R_1$, $R_2$, $R_3$, $R_4$, ..., $R_n$, $R_n+1$, ..., are in Geometric Progression with ratio

\begin{displaymath}
k\equiv {R_{n+1}\over R_n} = \phi+\sqrt{\phi}\,,
\end{displaymath}

where $\phi$ is the Golden Ratio (Gardner 1979ab). Coxeter (1968) generalized the sequence to Spheres.

See also Arbelos, Golden Ratio, Hexlet, Pappus Chain, Steiner Chain


References

Coxeter, D. ''Coxeter on `Firmament.''' http://www.bangor.ac.uk/SculMath/image/donald.htm.

Coxeter, H. S. M. ``Loxodromic Sequences of Tangent Spheres.'' Aequationes Math. 1, 112-117, 1968.

Gardner, M. ``Mathematical Games: The Diverse Pleasures of Circles that Are Tangent to One Another.'' Sci. Amer. 240, 18-28, Jan. 1979a.

Gardner, M. ``Mathematical Games: How to be a Psychic, Even if You are a Horse or Some Other Animal.'' Sci. Amer. 240, 18-25, May 1979b.




© 1996-9 Eric W. Weisstein
1999-05-25