info prev up next book cdrom email home

Inverse Cotangent

\begin{figure}\begin{center}\BoxedEPSF{ArcCot.epsf}\end{center}\end{figure}

\begin{figure}\begin{center}\BoxedEPSF{ArcCotReIm.epsf scaled 750}\end{center}\end{figure}

The function $\cot^{-1}x$, also denoted arccot($x$), where $\cot x$ is the Cotangent and the superscript $-1$ denotes an Inverse Function and not the multiplicative inverse. The Maclaurin Series is given by

\begin{displaymath}
\cot^{-1}x = {\textstyle{1\over 2}}\pi-x+{\textstyle{1\over ...
...^5+{\textstyle{1\over 7}}x^7-{\textstyle{1\over 9}}x^9+\ldots,
\end{displaymath} (1)

and Laurent Series by
\begin{displaymath}
\cot^{-1}x = x^{-1}-{\textstyle{1\over 3}}x^{-3}+{\textstyle...
...extstyle{1\over 7}}x^{-7}+{\textstyle{1\over 9}}x^{-9}+\ldots.
\end{displaymath} (2)

Euler derived the Infinite series


\begin{displaymath}
\cot^{-1} x=x\left[{{1\over x^2+1}+{2\over 3(x^2+1)^2}+{2\cdot 4\over 3\cdot 5(x^2+1)^3}+\ldots}\right]
\end{displaymath} (3)

(Wetherfield 1996).


The inverse cotangent satisfies

\begin{displaymath}
\cot^{-1}x=\pi-\cot^{-1}(-x)
\end{displaymath} (4)

for Positive and Negative $x$, and
\begin{displaymath}
\cot^{-1}={\textstyle{1\over 2}}\pi-\cot^{-1}\left({1\over x}\right)
\end{displaymath} (5)

for $x\geq 0$. The inverse cotangent is given in terms of other inverse trigonometric functions by
$\displaystyle \cot^{-1}x$ $\textstyle =$ $\displaystyle \cos^{-1}\left({x\over\sqrt{x^2+1}}\right)$ (6)
  $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}\pi-\sin^{-1}\left({x\over\sqrt{x^2+1}}\right)$ (7)
  $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}\pi+\tan^{-1}(-x)={\textstyle{1\over 2}}\pi-\tan^{-1}x$ (8)

for Positive or Negative $x$, and
$\displaystyle \cot^{-1}x$ $\textstyle =$ $\displaystyle \csc^{-1}(\sqrt{x^2+1}\,)$ (9)
  $\textstyle =$ $\displaystyle \sec^{-1}\left({\sqrt{x^2+1}\over x}\right)$ (10)
  $\textstyle =$ $\displaystyle \sin^{-1}\left({1\over\sqrt{x^2+1}}\right)$ (11)
  $\textstyle =$ $\displaystyle \tan^{-1}\left({1\over x}\right)$ (12)

for $x\geq 0$.


A number

\begin{displaymath}
t_x=\cot^{-1} x,
\end{displaymath} (13)

where $x$ is an Integer or Rational Number, is sometimes called a Gregory Number. Lehmer (1938a) showed that $\cot^{-1} (a/b)$ can be expressed as a finite sum of inverse cotangents of Integer arguments
\begin{displaymath}
\cot^{-1}\left({a\over b}\right)= \sum_{i=1}^k (-1)^{i-1} \cot^{-1} n_i,
\end{displaymath} (14)

where
\begin{displaymath}
n_i=\left\lfloor{a_i\over b_i}\right\rfloor ,
\end{displaymath} (15)

with $\left\lfloor{x}\right\rfloor $ the Floor Function, and
$\displaystyle a_{i+1}$ $\textstyle =$ $\displaystyle a_in+i+b_i$ (16)
$\displaystyle b_{i+1}$ $\textstyle =$ $\displaystyle a_i-n_ib_i,$ (17)

with $a_0=a$ and $b_0=b$, and where the recurrence is continued until $b_{k+1}=0$. If an Inverse Tangent sum is written as
\begin{displaymath}
\tan^{-1} n=\sum_{k=1} f_k\tan^{-1} n_k+f\tan^{-1} 1,
\end{displaymath} (18)

then equation (14) becomes
\begin{displaymath}
\cot^{-1} n=\sum_{k=1} f_k\cot^{-1} n_k + c\cot^{-1} 1,
\end{displaymath} (19)

where
\begin{displaymath}
c=2-f-2\sum_{k=1} f_k.
\end{displaymath} (20)

Inverse cotangent sums can be used to generate Machin-Like Formulas.


An interesting inverse cotangent identity attributed to Charles Dodgson (Lewis Carroll) by Lehmer (1938b; Bromwich 1965, Castellanos 1988ab) is

\begin{displaymath}
\cot^{-1}(p+r)+\tan^{-1}(p+q)=\tan^{-1} p,
\end{displaymath} (21)

where
\begin{displaymath}
1+p^2=qr.
\end{displaymath} (22)


Other inverse cotangent identities include

\begin{displaymath}
2\cot^{-1}(2x)-\cot^{-1}x=\cot^{-1}(4x^3+3x)
\end{displaymath} (23)


\begin{displaymath}
3\cot^{-1}(3x)-\cot^{-1}x=\cot^{-1}\left({27x^4+18x^2-1\over 8x}\right),
\end{displaymath} (24)

as well as many others (Bennett 1926, Lehmer 1938b).

See also Cotangent, Inverse Tangent, Machin's Formula, Machin-Like Formulas, Tangent


References

Abramowitz, M. and Stegun, C. A. (Eds.). ``Inverse Circular Functions.'' §4.4 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.

Bennett, A. A. ``The Four Term Diophantine Arccotangent Relation.'' Ann. Math. 27, 21-24, 1926.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143, 1987.

Bromwich, T. J. I. and MacRobert, T. M. An Introduction to the Theory of Infinite Series, 3rd ed. New York: Chelsea, 1991.

Castellanos, D. ``The Ubiquitous Pi. Part I.'' Math. Mag. 61, 67-98, 1988a.

Castellanos, D. ``The Ubiquitous Pi. Part II.'' Math. Mag. 61, 148-163, 1988b.

Lehmer, D. H. ``A Cotangent Analogue of Continued Fractions.'' Duke Math. J. 4, 323-340, 1938a.

Lehmer, D. H. ``On Arccotangent Relations for $\pi$.'' Amer. Math. Monthly 45, 657-664, 1938b.

mathematica.gif Weisstein, E. W. ``Arccotangent Series.'' Mathematica notebook CotSeries.m.

Wetherfield, M. ``The Enhancement of Machin's Formula by Todd's Process.'' Math. Gaz., 333-344, July 1996.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26