N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Let denote the number of Positive Integers not exceeding which can be expressed as a sum of
two squares, then
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
References
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 60-66, 1994.
Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/lr/lr.html
Flajolet, P. and Vardi, I. ``Zeta Function Expansions of Classical Constants.'' Unpublished manuscript. 1996.
http://pauillac.inria.fr/algo/flajolet/Publications/landau.ps.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea,
pp. 61-63, 1940.
Landau, E. ``Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindeszahl der zu ihrer
additiven Zusammensetzung erforderlichen Quadrate.'' Arch. Math. Phys. 13, 305-312, 1908.
Shanks, D. ``The Second-Order Term in the Asymptotic Expansion of .'' Math. Comput. 18, 75-86, 1964.
Shanks, D. ``Non-Hypotenuse Numbers.'' Fibonacci Quart. 13, 319-321, 1975.
Shanks, D. and Schmid, L. P. ``Variations on a Theorem of Landau. I.'' Math. Comput. 20, 551-569, 1966.
Shiu, P. ``Counting Sums of Two Squares: The Meissel-Lehmer Method.'' Math. Comput. 47, 351-360, 1986.
© 1996-9 Eric W. Weisstein