info prev up next book cdrom email home


In general, a spiral is a curve with $\tau(s)/\kappa(s)$ equal to a constant for all $s$, where $\tau$ is the Torsion and $\kappa$ is the Curvature.

See also Archimedes' Spiral, Circle Involute, Conical Spiral, Cornu Spiral, Cotes' Spiral, Daisy, Epispiral, Fermat's Spiral, Hyperbolic Spiral, Logarithmic Spiral, Mice Problem, Nielsen's Spiral, Phyllotaxis, Poinsot's Spirals, Polygonal Spiral, Spherical Spiral



Eppstein, D. ``Spirals.''

Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 54-66, 1991.

Lockwood, E. H. ``Spirals.'' Ch. 22 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 172-175, 1967.

Yates, R. C. ``Spirals.'' A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 206-216, 1952.

© 1996-9 Eric W. Weisstein