info prev up next book cdrom email home

Spiral

In general, a spiral is a curve with $\tau(s)/\kappa(s)$ equal to a constant for all $s$, where $\tau$ is the Torsion and $\kappa$ is the Curvature.

See also Archimedes' Spiral, Circle Involute, Conical Spiral, Cornu Spiral, Cotes' Spiral, Daisy, Epispiral, Fermat's Spiral, Hyperbolic Spiral, Logarithmic Spiral, Mice Problem, Nielsen's Spiral, Phyllotaxis, Poinsot's Spirals, Polygonal Spiral, Spherical Spiral


References

Spirals

Eppstein, D. ``Spirals.'' http://www.ics.uci.edu/~eppstein/junkyard/spiral.html.

Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 54-66, 1991.

Lockwood, E. H. ``Spirals.'' Ch. 22 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 172-175, 1967.

Yates, R. C. ``Spirals.'' A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 206-216, 1952.




© 1996-9 Eric W. Weisstein
1999-05-26