第八章 空间解析几何与向量代数
第一节 向量及其线性运算
一、 向量概念
二、 向量的线性运算
三、 空间直角坐标系
四、 利用坐标作向量的线性运算
五、 向量的模、 方向角、 投影
习题 8-1
第二节 数量积向量积混合积
一、 两向量的数量积
二、 两向量的向量积
三、 向量的混合积
习题 8-2
第三节 曲面及其方程
一、 曲面方程的概念
二、 旋转曲面
三、 柱面
四、 二次曲面
习题 8-3
第四节 空间曲线及其方程
一、 空间曲线的一般方程
二、 空间曲线的参数方程
三、 空间曲线在坐标面上的投影
习题 8~4
第五节 平面及其方程
一、 平面的点法式方程
二、 平面的一般方程
三、 两平面的夹角
习题 8-5
第六节 空间直线及其方程
一、 空间直线的一般方程
二、 空间直线的对称式方程与参数方程
三、 两直线的夹角
四、 直线与平面的夹角
五、 杂例
习题 8-6
总习题 八
第九章 多元函数微分法及其应用
第一节多元函数的基本概念
一、 平面点集n维空间
二、 多元函数概念
三、 多元函数的极限
四、 多元函数的连续性
习题 9~1
第二节 偏导数
一、 偏导数的定义及其计算法
二、 高阶偏导数
习题 9-2
第三节 全微分
一、 全微分的定义
二、 全微分在近似计算中的应用
习题 9~3
第四节 多元复合函数的求导法则习题 94
第五节 隐函数的求导公式
一、 一个方程的情形
二、 方程组的情形
习题 9-5
第六节 多元函数微分学的几何应用
一、 一元向量值函数及其导数
二、 空间曲线的切线与法平面
三、 曲面的切平面与法线
习题 9-6
第七节 方向导数与梯度
一、 方向导数
二、 梯度
习题 9-7
第八节 多元函数的极值及其求法
一、 多元函数的极值及最大值、 最小值
二、 条件极值拉格朗日乘数法
习题 9-8
第九节 二元函数的泰勒公式
一、 二元函数的泰勒公式
二、 极值充分条件的证明
习题 9-9
第十节 最小二乘法习题 9-10
总习题 九
第十章 重积分
第一节 二重积分的概念与性质
一、 二重积分的概念
二、 二重积分的性质
习题 10-1
第二节 二重积分的计算法
一、 利用直角坐标计算二重积分
二、 利用极坐标计算二重积分
三、 二重积分的换元法
习题 10-2
第三节 三重积分
一、 三重积分的概念
二、 三重积分的计算
习题 10-3
第四节 重积分的应用
一、 曲面的面积
二、 质心
三、 转动惯量
四、 引力
习题 10-4
第五节 含参变量的积分习题 10-5
总习题 十
第十一章 曲线积分与曲面积分
第一节 对弧长的曲线积分
一、 对弧长的曲线积分的概念与性质
二、 对弧长的曲线积分的计算法
习题 儿-1
第二节 对坐标的曲线积分
一、 对坐标的曲线积分的概念与性质
二、 对坐标的曲线积分的计算法
三、 两类曲线积分之间的联系
习题 11-2
第三节 格林公式及其应用
一、 格林公式
二、 平面上曲线积分与路径无关的条件
三、 二元函数的全微分求积
四、 曲线积分的基本定理
习题 11-3
第四节 对面积的曲面积分
一、 对面积的曲面积分的概念与性质
二、 对面积的曲面积分的计算法
习题 11-4
第五节 对坐标的曲面积分
一、 对坐标的曲面积分的概念与性质
二、 对坐标的曲面积分的计算法
三、 两类曲面积分之帕j的联系
习题 IJ5
第六节 高斯公式。通量与散度
一、 高斯公式
二、 沿任意闭曲面的曲面积分为零的条件
三、 通量与散度
习题 11-6
第七节 斯托克斯公式 环流量与旋度
一、 斯托克斯公式
二、 空间曲线积分与路径无关的条件
三、 环流量与旋度
习题 11-7
总习题 十一
第十二章 无穷级数
第一节 常数项级数的概念和性质
一、 常数项级数的概念
二、 收敛级数的基本性质
三、 柯西审敛原理
习题 12-1
第二节 常数项级数的审敛法
一、 正项级数及其审敛法
二、 交错级数及其审敛法
三、 绝对收敛与条件收敛
四、 绝对收敛级数的性质
习题 12-2
第三节 幂级数
一、 函数项级数的概念
二、 幂级数及其收敛性
三、 幂级数的运算
习题 12-3
第四节 函数展开成幂级数
习题 12-4
第五节 函数的幂级数展开式的应用
一、 近似计算
二、 微分方程的幂级数解法
三、 欧拉公式
习题 12-5
第六节 函数项级数的一致收敛性及一致收敛级数的基本性质
一、 函数项级数的一致收敛性
二、 一致收敛级数的基本性质
习题 12-6
第七节 傅里叶级数
一、 三角级数三角函数系的正交性
二、 函数展开成傅里叶级数
三、 正弦级数和余弦级数
习题 12-7
第八节 一般周期函数的傅里叶级数
一、 周期为2z的周期函数的傅里叶级数
二、 傅里叶级数的复数形式
习题 12-8
总习题 十二
习题 答案与提示