AI math handbook calculator - Fractional Calculus Computer Algebra System software
Home
| list
| math
| function
| coding
| graphics
| example
| help
| 中文
+
+
+
=
Wolfram Bugs >1000
Content
Wolfram cannot find SIMPLE solution
Wolfram solutions are wrong
Wolfram cannot solve
There are bugs in many software such as WolframAlpha. Wish wolfram fix the bugs. You can copy equation and paste into MathHand.com, click the ODE button to solve, then click the test button to test its solution.
Wolfram cannot find SIMPLE solution
Its solution is too compliacted, so cannot checked, perhaps the solution is wrong.
first order ODE
y'= cbrt(y)
y'= 2*cbrt(y)
y'= 3*cbrt(y)
y'= (x)*cbrt(y)
y'= (x)^2*cbrt(y)
y'= (x)^3*cbrt(y)
y'= 2*(x)*cbrt(y)
y'= 2*x^2*cbrt(y)
y'= 2*(x)^3*cbrt(y)
y'= (x-1)*cbrt(y)
y'= (x-1)^2*cbrt(y)
y'= (x-1)^3*cbrt(y)
y'= (x)*cbrt(y-1)
y'= (x)^2*cbrt(y-1)
y'= (x)^3*cbrt(y-1)
y'= 2*(x-1)*cbrt(y)
y'= 2*(x-1)^2*cbrt(y)
y'= 2*(x-1)^3*cbrt(y)
y'= 2*(x)*cbrt(y-1)
y'= 2*(x)^2*cbrt(y-1)
y'= 2*(x)^3*cbrt(y-1)
y' *(y^2+x)-2y =0
y' *(y^2+x)-3y =0
y' *(y^2+x)-4y =0
y' *(y^2+x)+3y =0
y' *(y^2+x)+4y =0
y'^2-x*y'-y=0
y'^2-x*y'-2y=0
y'^2-2x*y'-y=0
y'^2-2x*y'-2y=0
y'-x/(y-x-1)=0
y'-(x-1)/(y-x-1)=0
y'-x/(y-x-11)=0
y'-(x-11)/(y-x-11)=0
y'-x/(y-2x-1)=0
y'-(x-11)/(y-x-1)=0
y'-1/(y-x-1)-1=0
y'= -1/(y-x-1)-1
second order ODE
y''+y' +x*y+x*x+1=0
y''+y' +2x*y+2x*x+1=0
y'' *y'-y=0
y'' *y'-2y=0
y'' *y'-3y=0
y'' *y'-c*y=0
y''-y/(x+1)-1=0
y''-y/(2x+1)-1=0
y''-2y/(2x+1)-1=0
x*y''-y-1-x=0
x*y''-y-1-2x=0
x*y''-y+1-2x=0
x*y''-y-x=0
x*y''-y-2x=0
x*y''-2y-2x=0
y" -(x+y)^2 =0
y" -(x+y)^3 =0
y" -(x+y-1)^2 =0
y" -(x+y-1)^3 =0
y" -(x+y+1)^2 =0
y" -(x+y+1)^3 =0
y''-x^2-2x*y-y^2=0
y' *y'' -x^2-1=0
y' *y'' -x^2-2=0
y' *y'' -x^2-3=0
y' *y'' -x^2+1=0
y' *y'' -x^2+2=0
y' *y'' -x^2+3=0
y' *y'' +x^2-1=0
y' *y'' +x^2-2=0
y' *y'' +x^2-3=0
y' *y'' +x^2+1=0
y' *y'' +x^2+2=0
y' *y'' +x^2+c=0
y''*y'-y^2=0
y''*y'-y^3=0
y''*y'-y^4=0
y''-x*y'-x*y-x=0
y''-x*y'-x*y-2x=0
y''-x*y'-x*y-3x=0
.......
y''-x*y'-x*y-n*x=0
y''-x*y'-x*y-x^2-x=0
y''-x*y'-x*y-x^3+2=0
y''-x*y'-x*y-x^4-6=0
y''-x*y'-x*y-x^5+24=0
.......
y''-x*y'-x*y-x^n=0
y''-a*x*y'-b*x*y-c*x^n=0
y''-y'-x*y-x=0
y''-y'-x*y-x^2=0
y''-y'-x*y-x^2-1=0
y''-2*y'-x*y-x^2-2=0
y''-4*y'-x*y-x^2-4=0
y''-y'-x*y-x^3-x^2+1=0
y''-2y'-x*y-x^3-x^2=0
y''-y'-x*y-x^3+2=0
y''-2y'-x*y-x^3+2=0
y''-4y'-x*y-x^3+2=0
y''-6y'-x*y-x^3+2=0
y''-8y'-x*y-x^3+2=0
y''-y'-x*y-x^4+3=0
.......
y''-y'-x*y-x^n=0
y''-a*y'-b*x*y-c*x^n=0
y''-x*y-x^3+2=0
y''-x*y-x^6+40=0
.......
y''-x*y-x^n=0
y''-x*y-x^6-x^3+42=0
y''-x^2*y-x^2=0
y''-x^2*y-x^3=0
y''-x^2*y-x^4=0
y''-x^2*y-x^4+2=0
y''-2x^2*y-x^4+1=0
y''-x^3*y-x^3=0
y''-x^3*y-x^4=0
.......
y''-x^n*y-x^n=0
y''-x^2*y'-x*y-x^2=0
y''-x^2*y'-x*y-2x^2=0
y''-x^2*y'-x*y-3x^2=0
.......
y''-x^2*y'-x*y-n*x^2=0
y''-x^3*y'-x^2*y-x^3=0
y''-x^3*y'-x^3*y-x^3=0
.......
y''-x^n*y'-x^n*y-x^n=0
y''-x^2*y'-x*y-x^2=0
y''-x^2*y'-x^2*y-x^3-x^2=0
y''-x^2*y'-x^3*y-x^4-x^2=0
y''-x^3*y'-x*y-x^3-x^2=0
y''-x^3*y'-x^2*y-x^3=0
y''-x^3*y'-x^3*y-x^4-x^3=0
y''-x^3*y'-x^2*y-2x^3=0
y''-x^3*y'-x^2*y-3x^3=0
y''-x^3*y'-x^2*y-4x^3=0
.......
y''-x^3*y'-x^2*y-n*x^3=0
y''-1/x*y'-x*y-x^2-1/x=0
y''-1/x*y'-x^2*y-x^3-1/x=0
y''-1/x*y'-x^3*y-x^4-1/x=0
y'*y'' -exp(y)=0
y'*y'' -2exp(y)=0
y'*y'' -3exp(y)=0
y'' -y^2 =0
y'' -y^3 =0
y'' -y^2.5 =0
y'' -y^3.5 =0
y''-y^2+y=0
y''-y^2-4y-1=0
y''-y^2-2y-1=0
y''+y^2+2y=0
y''+y^2+2=0
y''-y^3-y=0
y''-y^3+y=0
y''+y^3-y=0
y''+y^3+y=0
Wolfram solutions are wrong
first order ODE
y'-y^2-2x^2-1=0
y'-y^2-x^2-3=0
y'-y^2-x^2-x-1=0
y'-y^2-x^2-x-11=0
y'-y^2-x^2-x=0
......
y'- y^2 -b *x^2 =0
y'-y^2 -b *x^2-c =0
y'-y^2 -b *x^2-c *x =0
y'-y^2 -b *x^2-c *x-d=0
Wolfram solution always is 1/(c1-x) for above equations.
y'-2y^2-2x^2-1=0
y'-2y^2-x^2-3x=0
y'-2y^2-x^2-x-1=0
y'-2y^2-x^2-x-11=0
......
y'-2 y^2 -b* x^2 =0
y'-2y^2 -b* x^2-c =0
y'-2y^2 -b* x^2-c* x =0
y'-2y^2 -b* x^2-c* x-d =0
Wolfram solution always is 1/(2 (c1-x)) for above equations.
y'-3y^2-2x^2-1=0
y'-3y^2-x^2-3x=0
y'-3y^2-x^2-x-1=0
y'-3y^2-x^2-x-11=0
.....
y'-3y^2 -b* x^2 =0
y'-3y^2 -b* x^2-c =0
y'-3y^2 -b* x^2-c* x =0
y'-3y^2 -b* x^2-c* x-d =0
Wolfram solution always is 1/(3 (c1-x)) for above equations.
y'-a*y^2 -b* x^2 =0
y'-a*y^2 -b* x^2-c* x =0
y'-a*y^2 -b* x^2-d =0
y'-a*y^2 -b* x^2-c* x-d=0
Wolfram solution always is 1/(a (c1-x)) for above equations.
y'-a*y^2 -y-b* x^2 =0
y'-a*y^2 -y-b* x^2-c *x =0
y'-a*y^2 -y-b* x^2-d =0
y'-a*y^2 -y-b* x^2-c *x-d=0
Wolfram solution always is 1/(a (c1-x))-1/(2a) for above equations.
y'-a*y^2 -f*y-b*x^2 =0
y'-a*y^2 -f*y-b*x^2-c*x =0
y'-a*y^2 -f*y-b*x^2-d =0
y'-a*y^2 -f*y-b*x^2-c*x-d=0
Wolfram solution always is 1/(a (c1-x))-f/(2a) for above equations.
second order ODE
y''-y'*y-x=0
y''-y'*y-2x=0
y''- y* y'-3x=0
......
y''- y *y' -c *x=0
Wolfram solution always is 2/(c1-x) for above equations.
y''+y'*y+x=0
y''+y'*y+2x=0
y''+ y *y'+3x=0
......
y''+ y *y' +c *x=0
Wolfram solution always is 2/(c1+x) for above equations.
y''-2 y*y'-x=0
y''-2 y*y'-2x=0
y''-2 y*y'-3x=0
......
y''-2 y*y' -c *x=0
Wolfram solution always is 1/(c1-x) for above equations.
y''-b*y*y'-x=0
y''-b*y*y'-2x=0
y''-b*y*y'-3x=0
......
y''-b*y*y' -c *x=0
Wolfram solution always is 2/(b (c1-x)) for above equations.
y''+y'*y+x=0
y''+y'*y+2x=0
y''+ y*y'+3x=0
......
y''+ y*y' +c*x=0
Wolfram solution always is 2/(c1+x) for above equations.
y''* y'-y(x)^n=0
y''* y'+y(x)^n=0
when the minus sign in all above examples changed to the plus sign, wolfram also give wrong result.
partial differential equation
if adding a term to above equations become the partial differential equations, thier solutions are wrong too.
D[y[x, t], t] +D[y[x, t], x] -y^2-x^2-1 == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-x^2-2 == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-x^2-x == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-x^2-x-1 == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-x^2-x-2 == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-x^2-2x == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-x^2-2x-1 == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-x^2-2x-2 == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-2x^2-x == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-2x^2-x-1 == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-2x^2-x-2 == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-2x^2-2x == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-2x^2-2x-1 == 0
D[y[x, t], t] +D[y[x, t], x] -y^2-2x^2-2x-2 == 0
......
Wolfram solutions always is 1/(c1(x-t)-x)
Wolfram cannot solve
Integral
integrate f(x)
integrate(diff(F(x)),x,a,b)
integrate x^x
integrate(x^(-x))
integrate(x^(2x))
integrate(x^(n* x))
integrate x^x/x
integrate x^x/x^2
integrate x^x/exp(x)
integrate(x^(-x)/exp(x))
integrate(x^(2x)/exp(x))
integrate(x^(n* x)/exp(x))
First order ode
y'=sin(x+y)
y'=sin(x+y+1)
y'=sin(x+y-1)
y'=sin(-x+y)
y'=sin(-x+y+1)
y'=sin(-x+y-1)
y'=sin(y+x)+x
y'=sin(y+x+1)+x
y'=sin(y-x)+x
y'=sin(y-x-1)+x
y'=sin(y-x)-x
y'=sin(y-x-1)-x
y'=sin(y-x^2)+x
y'=sin(y-x^2-1)+x
y'=sin(y-x^2-1)-x
y'= tan(x+y)
y'= cot(x+y)
y'= 1/tan(x+y)
y'= 1/cot(x+y)
y'= 1/csc(y+x)
y'= atan(x+y)
y'= acot(x+y)
y'= asec(x+y)
y'= acsc(x+y)
y'= csch(x+y)
y'= atanh(x+y)
y'= acoth(x+y)
y'= asech(x+y)
y'= acsch(x+y)
y'= asin(y)+cos(x)-x
y'= asin(y-1)+cos(x)-x
y'= asin(y+x^2)+cos(x)-3x
y'= asin(y-1+x^2)+cos(x)-3x
y'= asin(y-x^2/2)+cos(x)
y'= asin(y-1-x^2/2)+cos(x)
y'= asin(y)+cos(x+1)-x-1
y'= asin(y-1)+cos(x+1)-x-1
y'= asin(y+x^2)+cos(x+1)-3x-1
y'= asin(y-1+x^2)+cos(x+1)-3x-1
y'= asin(y)+2cos(2x)-2x
y'= asin(y-1)+2cos(2x)-2x
y'= asin(y-x^2)+2cos(2x)
y'= asin(y-1-x^2)+2cos(2x)
y'= asin(y-x^2)+2cos(2x+1)-1
y'= asin(y-1-x^2)+2cos(2x+1)-1
y'= asin(y-x^2/2)+cos(x+1)-1
y'= asin(y-1-x^2/2)+cos(x+1)-1
y'= 2asin(y)+cos(x)-2x
y'= 2asin(y-1)+cos(x)-2x
y'= 2asin(y+x^2)+cos(x)-5x
y'= 2asin(y-1+x^2)+cos(x)-5x
y'= 2asin(y-x^2/2)+cos(x)-x
y'= 2asin(y-1-x^2/2)+cos(x)-x
y'= 2asin(y)+cos(x+1)-2x-1
y'= 2asin(y-1)+cos(x+1)-2x-1
y'= 2asin(y+x^2)+cos(x+1)-5x-1
y'= 2asin(y-1+x^2)+cos(x+1)-5x-1
y'= 2asin(y)+2cos(2x)-3x
y'= 2asin(y-1)+2cos(2x)-3x
y'= 2asin(y-x^2)+2cos(2x)-x
y'= 2asin(y-1-x^2)+2cos(2x)-x
y'= 2asin(y-x^2)+2cos(2x+1)-1-x
y'= 2asin(y-1-x^2)+2cos(2x+1)-1-x
y'= 2asin(y-x^2/2)+cos(x+1)-1-x
y'= 2asin(y-1-x^2/2)+cos(x+1)-1-x
y'= acos(y)-sin(x)-x
y'= acos(y-1)-sin(x)-x
y'= acos(y+x^2)-sin(x)-3x
y'= acos(y-1+x^2)-sin(x)-3x
y'= acos(y-x^2/2)-sin(x)
y'= acos(y-1-x^2/2)-sin(x)
y'= acos(y)-sin(x+1)-x-1
y'= acos(y-1)-sin(x+1)-x-1
y'= acos(y+x^2)-sin(x+1)-3x-1
y'= acos(y-1+x^2)-sin(x+1)-3x-1
y'= acos(y)-2sin(2x)-2x
y'= acos(y-1)-2sin(2x)-2x
y'= acos(y-x^2)-2sin(2x)
y'= acos(y-1-x^2)-2sin(2x)
y'= acos(y-x^2)-2sin(2x+1)-1
y'= acos(y-1-x^2)-2sin(2x+1)-1
y'= acos(y-x^2/2)-sin(x+1)-1
y'= acos(y-1-x^2/2)-sin(x+1)-1
y'= 2acos(y)-sin(x)-2x
y'= 2acos(y-1)-sin(x)-2x
y'= 2acos(y+x^2)-sin(x)-5x
y'= 2acos(y-1+x^2)-sin(x)-5x
y'= 2acos(y-x^2/2)-sin(x)-x
y'= 2acos(y-1-x^2/2)-sin(x)-x
y'= 2acos(y)-sin(x+1)-2x-1
y'= 2acos(y-1)-sin(x+1)-2x-1
y'= 2acos(y+x^2)-sin(x+1)-4x-1
y'= 2acos(y-1+x^2)-sin(x+1)-4x-1
y'= 2acos(y)-2sin(2x)-3x
y'= 2acos(y-1)-2sin(2x)-3x
y'= 2acos(y-x^2)-2sin(2x)-x
y'= 2acos(y-1-x^2)-2sin(2x)-x
y'= 2acos(y-x^2)-2sin(2x+1)-1-x
y'= 2acos(y-1-x^2)-2sin(2x+1)-1-x
y'= 2acos(y-x^2/2)-sin(x+1)-1-x
y'= 2acos(y-1-x^2/2)-sin(x+1)-1-x
y'= asinh(y)+cosh(x)-x
y'= asinh(y-1)+cosh(x)-x
y'= asinh(y+x^2)+cosh(x)-3x
y'= asinh(y-1+x^2)+cosh(x)-3x
y'= asinh(y-x^2/2)+cosh(x)
y'= asinh(y-1-x^2/2)+cosh(x)
y'= asinh(y)+cosh(x+1)-x-1
y'= asinh(y-1)+cosh(x+1)-x-1
y'= asinh(y+x^2)+cosh(x+1)-3x-1
y'= asinh(y-1+x^2)+cosh(x+1)-3x-1
y'= asinh(y)+2cosh(2x)-2x
y'= asinh(y-1)+2cosh(2x)-2x
y'= asinh(y-x^2)+2cosh(2x)
y'= asinh(y-1-x^2)+2cosh(2x)
y'= asinh(y-x^2)+2cosh(2x+1)-1
y'= asinh(y-1-x^2)+2cosh(2x+1)-1
y'= asinh(y-x^2/2)+cosh(x+1)-1
y'= asinh(y-1-x^2/2)+cosh(x+1)-1
y'= 2asinh(y)+cosh(x)-2x
y'= 2asinh(y-1)+cosh(x)-2x
y'= 2asinh(y+x^2)+cosh(x)-4x
y'= 2asinh(y-1+x^2)+cosh(x)-4x
y'= 2asinh(y-x^2/2)+cosh(x)-x
y'= 2asinh(y-1-x^2/2)+cosh(x)-x
y'= 2asinh(y)+cosh(x+1)-2x-1
y'= 2asinh(y-1)+cosh(x+1)-2x-1
y'= 2asinh(y+x^2)+cosh(x+1)-4x-1
y'= 2asinh(y-1+x^2)+cosh(x+1)-4x-1
y'= 2asinh(y)+2cosh(2x)-3x
y'= 2asinh(y-1)+2cosh(2x)-3x
y'= 2asinh(y-x^2)+2cosh(2x)-x
y'= 2asinh(y-1-x^2)+2cosh(2x)-x
y'= 2asinh(y-x^2)+2cosh(2x+1)-1-x
y'= 2asinh(y-1-x^2)+2cosh(2x+1)-1-x
y'= 2asinh(y-x^2/2)+cosh(x+1)-1-x
y'= 2asinh(y-1-x^2/2)+cosh(x+1)-1-x
y'= acosh(y)-sinh(x)-x
y'= acosh(y-1)-sinh(x)-x
y'= acosh(y+x^2)-sinh(x)-3x
y'= acosh(y-1+x^2)-sinh(x)-3x
y'= acosh(y-x^2/2)-sinh(x)
y'= acosh(y-1-x^2/2)-sinh(x)
y'= acosh(y)-sinh(x+1)-x-1
y'= acosh(y-1)-sinh(x+1)-x-1
y'= acosh(y+x^2)-sinh(x+1)-3x-1
y'= acosh(y-1+x^2)-sinh(x+1)-3x-1
y'= acosh(y)-2sinh(2x)-2x
y'= acosh(y-1)-2sinh(2x)-2x
y'= acosh(y-x^2)-2sinh(2x)
y'= acosh(y-1-x^2)-2sinh(2x)
y'= acosh(y-x^2)-2sinh(2x+1)-1
y'= acosh(y-1-x^2)-2sinh(2x+1)-1
y'= acosh(y-x^2/2)-sinh(x+1)-1
y'= acosh(y-1-x^2/2)-sinh(x+1)-1
y'= 2acosh(y)-sinh(x)-2x
y'= 2acosh(y-1)-sinh(x)-2x
y'= 2acosh(y+x^2)-sinh(x)-4x
y'= 2acosh(y-1+x^2)-sinh(x)-4x
y'= 2acosh(y-x^2/2)-sinh(x)-x
y'= 2acosh(y-1-x^2/2)-sinh(x)-x
y'= 2acosh(y)-sinh(x+1)-2x-1
y'= 2acosh(y-1)-sinh(x+1)-2x-1
y'= 2acosh(y+x^2)-sinh(x+1)-4x-1
y'= 2acosh(y-1+x^2)-sinh(x+1)-4x-1
y'= 2acosh(y)-2sinh(2x)-3x
y'= 2acosh(y-1)-2sinh(2x)-3x
y'= 2acosh(y-x^2)-2sinh(2x)-x
y'= 2acosh(y-1-x^2)-2sinh(2x)-x
y'= 2acosh(y-x^2)-2sinh(2x+1)-1-x
y'= 2acosh(y-1-x^2)-2sinh(2x+1)-1-x
y'= 2acosh(y-x^2/2)-sinh(x+1)-1-x
y'= 2acosh(y-1-x^2/2)-sinh(x+1)-1-x
y'= log(y)+exp(x)-x
y'= log(y-1)+exp(x)-x
y'= log(y+x^2)+exp(x)-3x
y'= log(y-1+x^2)+exp(x)-3x
y'= log(y-x^2/2)+exp(x)
y'= log(y-1-x^2/2)+exp(x)
y'= log(y)+exp(x+1)-x-1
y'= log(y-1)+exp(x+1)-x-1
y'= log(y+x^2)+exp(x+1)-3x-1
y'= log(y-1+x^2)+exp(x+1)-3x-1
y'= log(y-x^2/2)+exp(x+1)-1
y'= log(y-1-x^2/2)+exp(x+1)-1
y'= 2log(y)+exp(x)-2x
y'= 2log(y-1)+exp(x)-2x
y'= 2log(y+x^2)+exp(x)-4x
y'= 2log(y-1+x^2)+exp(x)-4x
y'= 2log(y-x^2/2)+exp(x)-x
y'= 2log(y-1-x^2/2)+exp(x)-x
y'= 2log(y)+exp(x+1)-2x-1
y'= 2log(y-1)+exp(x+1)-2x-1
y'= 2log(y+x^2)+exp(x+1)-4x-1
y'= 2log(y-1+x^2)+exp(x+1)-4x-1
y'= 2log(y-x^2/2)+exp(x+1)-1-x
y'= 2log(y-1-x^2/2)+exp(x+1)-1-x
y'=cbrt(x+y)
y'=cbrt(x+y)-1
y'=cbrt(x+y)+1
y'=cbrt(x+y+1)
y'=cbrt(x+y-1)
y'=cbrt(x+y+1)-1
y'=cbrt(x+y-1)+1
y'=cbrt(-x+y)
y'=cbrt(-x+y+1)
y'=cbrt(-x+y-1)
y'=cbrt(-x+y)-1
y'=cbrt(-x+y+1)-1
y'=cbrt(-x+y-1)-1
y'=cbrt(-x+y)+1
y'=cbrt(-x+y+1)+1
y'=cbrt(-x+y-1)+1
y'=cbrt(y+x)+x
y'=cbrt(y+x+1)+x
y'=cbrt(y-x)+x
y'=cbrt(y-x-1)+x
y'=cbrt(y-x)-x
y'=cbrt(y-x-1)-x
y'=cbrt(y-x^2)+x
y'=cbrt(y-x^2-1)+x
y'=cbrt(y-x^2-1)-x
y'=2cbrt(x+y)
y'=2cbrt(x+y)-1
y'=2cbrt(x+y)+1
y'=2cbrt(x+y+1)
y'=2cbrt(x+y-1)
y'=2cbrt(x+y+1)-1
y'=2cbrt(x+y-1)+1
y'=2cbrt(-x+y)
y'=2cbrt(-x+y+1)
y'=2cbrt(-x+y-1)
y'=2cbrt(-x+y)-1
y'=2cbrt(-x+y+1)-1
y'=2cbrt(-x+y-1)-1
y'=2cbrt(-x+y)+1
y'=2cbrt(-x+y+1)+1
y'=2cbrt(-x+y-1)+1
y'=2cbrt(y+x)+x
y'=2cbrt(y+x+1)+x
y'=2cbrt(y-x)+x
y'=2cbrt(y-x-1)+x
y'=2cbrt(y-x)-x
y'=2cbrt(y-x-1)-x
y'=2cbrt(y-x^2)+x
y'=2cbrt(y-x^2-1)+x
y'=2cbrt(y-x^2-1)-x
y'= cbrt(x*y)
y'= cbrt(2x*y)
y'= 2cbrt(x*y)
y'= 2cbrt(2x*y)
y'= cbrt(x*y)*x
y'= cbrt(2x*y)*x
y'= 2cbrt(x*y)*x
y'= 2cbrt(2x*y)*x
y'= cbrt(x*y)*x^2
y'= cbrt(2x*y)*x^2
y'= 2cbrt(x*y)*x^2
y'= 2cbrt(2x*y)*x^2
y'= (x-1)*cbrt(y-1)
y'= (x-1)^2*cbrt(y-1)
y'= (x-1)^3*cbrt(y-1)
y'= (2*x-1)*cbrt(y-1)
y'= 2*(x-1)^2*cbrt(y-1)
y'= 2*(x-1)^3*cbrt(y-1)
y'= 2*(x)^2*cbrt(y-1)
y'= 2*(x)^3*cbrt(y-1)
y'= (x-1)*cbrt(y-2)
y'= (x-1)^2*cbrt(y-2)
y'= (x-1)^3*cbrt(y-2)
y'= (2*x-1)*cbrt(y-2)
y'= 2*(x-1)^2*cbrt(y-2)
y'= 2*(x-1)^3*cbrt(y-2)
y'=sqrt(x)*cbrt(y)
y'=sqrt(x)*cbrt(y-1)
y'=sqrt(x)*cbrt(y-a)
y'=sqrt(x-1)*cbrt(y)
y'=sqrt(x-1)*cbrt(y-a)
y'=sqrt(x-b)*cbrt(y)
y'=sqrt(x-b)*cbrt(y-a)
y'=1/sqrt(x)*cbrt(y)
y'=1/sqrt(x)*cbrt(y-1)
y'=1/sqrt(x)*cbrt(y-a)
y'=1/sqrt(x-1)*cbrt(y)
y'=1/qrt(x-2)*cbrt(y-a)
y'=1/sqrt(x-b)*cbrt(y)
y'=1/qrt(x-b)*cbrt(y-a)
y'=cbrt(y)*x^n
y'=cbrt(y-1)*x^n
y'=cbrt(y+1)*x^n
y'=2*sqrt(x)*cbrt(y)
y'=2*sqrt(x)*cbrt(y-1)
y'=2*sqrt(x)*cbrt(y-a)
y'=2*sqrt(x-1)*cbrt(y)
y'=2*sqrt(x-1)*cbrt(y-a)
y'=2*sqrt(x-b)*cbrt(y)
y'=2*sqrt(x-b)*cbrt(y-a)
y'=2*1/sqrt(x)*cbrt(y)
y'=2*1/sqrt(x)*cbrt(y-1)
y'=2*1/sqrt(x)*cbrt(y-a)
y'=2*1/sqrt(x-1)*cbrt(y)
y'=2*1/qrt(x-2)*cbrt(y-a)
y'=2*1/sqrt(x-b)*cbrt(y)
y'=2*1/qrt(x-b)*cbrt(y-a)
y'=2*cbrt(y)*x^n
y'=2*cbrt(y-1)*x^n
y'=2*cbrt(y+1)*x^n
y'=sqrt(x)/cbrt(y)
y'=sqrt(x)/cbrt(y-1)
y'=sqrt(x)/cbrt(y-a)
y'=sqrt(x-1)/cbrt(y)
y'=sqrt(x-1)/cbrt(y-a)
y'=sqrt(x-b)/cbrt(y)
y'=sqrt(x-b)/cbrt(y-a)
y'=1/sqrt(x)/cbrt(y)
y'=1/sqrt(x)/cbrt(y-1)
y'=1/sqrt(x)/cbrt(y-a)
y'=1/sqrt(x-1)/cbrt(y)
y'=1/qrt(x-2)/cbrt(y-a)
y'=1/sqrt(x-b)/cbrt(y)
y'=1/qrt(x-b)/cbrt(y-a)
y'=cbrt(y)/x^n
y'=2*sqrt(x)/cbrt(y)
y'=2*sqrt(x)/cbrt(y-1)
y'=2*sqrt(x)/cbrt(y-a)
y'=2*sqrt(x-1)/cbrt(y)
y'=2*sqrt(x-1)/cbrt(y-a)
y'=2*sqrt(x-b)/cbrt(y)
y'=2*sqrt(x-b)/cbrt(y-a)
y'=2*1/sqrt(x)/cbrt(y)
y'=2*1/sqrt(x)/cbrt(y-1)
y'=2*1/sqrt(x)/cbrt(y-a)
y'=2*1/sqrt(x-1)/cbrt(y)
y'=2*1/qrt(x-2)/cbrt(y-a)
y'=2*1/sqrt(x-b)/cbrt(y)
y'=2*1/qrt(x-b)/cbrt(y-a)
y'=2*cbrt(y)/x^n
y'^3=y'+x
y'^3=y'+2x
y'^3=y'+3x
y'^3=2y'+x
y'^3=2y'+2x
y'^3=2y'+3x
y'^4=y'+x
y'^4=y'+2x
y'^4=y'+3x
y'^4=2y'+x
y'^4=2y'+2x
y'^4=2y'+3x
y'^5=y'+x
y'^5=y'+2x
y'^5=y'+3x
y'^5=2y'+x
y'^5=2y'+2x
y'^5=2y'+3x
y'^3+2x*y'-2y-2y^2=0
y'^3+2x*y'-2y-2y^2=1
y'^3+2x*y'-2y-2y^2=2
y'^3+2x*y'-2y-4y^2=0
y'^3+2x*y'-2y-4y^2=1
y'^3+2x*y'-2y-4y^2=2
y'^3+2x*y'-2y-2y^2.5=0
y'^3+2x*y'-2y-2y^2.5=1
y'^3+2x*y'-2y-2y^2.5=2
y'^3+2x*y'-2y-4y^2.5=0
y'^3+2x*y'-2y-4y^2.5=1
y'^3+2x*y'-2y-4y^2.5=2
......
Second order ode
y''= tan(x+y)
y''= cot(x+y)
y''= sec(x+y)
y''= csc(x+y)
y''= tan(x+y+1)
y''= cot(x+y+1)
y''= sec(x+y+1)
y''= csc(x+y+1)
y''= tan(x+y+1)
y''= cot(x+y+1)
y''= sec(x+y+1)
y''= csc(x+y+1)
y''= atan(x+y)
y''= acot(x+y)
y''= asec(x+y)
y''= acsc(x+y)
y''= atan(x+y+1)
y''= acot(x+y+1)
y''= asec(x+y+1)
y''= acsc(x+y+1)
y''= atan(x+y-1)
y''= acot(x+y-1)
y''= asec(x+y-1)
y''= acsc(x+y-1)
y''= tanh(x+y)
y''= coth(x+y)
y''= sech(x+y)
y''= csch(x+y)
y''= tanh(x+y+1)
y''= coth(x+y+1)
y''= sech(x+y+1)
y''= csch(x+y+1)
y''= tanh(x+y-1)
y''= coth(x+y-1)
y''= sech(x+y-1)
y''= csch(x+y-1)
y''= atahn(x+y)
y''= acoth(x+y)
y''= asech(x+y)
y''= acsch(x+y)
y''= atahn(x+y+1)
y''= acoth(x+y+1)
y''= asech(x+y+1)
y''= acsch(x+y+1)
y''= atahn(x+y-1)
y''= acoth(x+y-1)
y''= asech(x+y-1)
y''= acsch(x+y-1)
y'' = exp(-x+y)-1
y'' = exp(-2x+y)-1
y'' = 1/exp(x+y)-1
y'' = 1/exp(2x+y)-1
y'' = exp(x+y)-x
y'' = exp(2x+y)-x
y'' = 1/exp(x+y)-x
y'' = 1/exp(2x+y)-x
y'' = exp(-x*x+y)-2x
y'' = exp(-x*x+y)-2x
y'' = 1/exp(x+y)-2x
y'' = 1/exp(2x*x+y)-2x
y'' = 1/exp(x+y+1)
y'' = 1/exp(2x+y+1)
y'' = 1/exp(x+y+1)-1
y'' = 1/exp(2x+y+1)-1
y'' = exp(-x+y+1)-1
y'' = exp(-2x+y+1)-1
y'' = exp(x+y+1)-x
y'' = exp(2x+y+1)-x
y'' = 1/exp(x+y+1)-x
y'' = 1/exp(2x+y+1)-x
y'' = exp(-x*x+y+1)-2x
y'' = exp(-x*x+y+1)-2x
y'' = 1/exp(x+y+1)-2x
y'' = 1/exp(2x*x+y+1)-2x
y'' = sin(x+y)-1
y'' = sin(-x+y)-1
y'' = cos(x+y)-1
y'' = cos(-x+y)-1
y'' = sin(x+y-1)-1
y'' = sin(-x+y-1)-1
y'' = cos(x+y-1)-1
y'' = cos(-x+y-1)-1
y'' = sinh(x+y)-1
y'' = sinh(-x+y)-1
y'' = cosh(x+y)-1
y'' = cosh(-x+y)-1
y'' = sinh(x+y-1)-1
y'' = sinh(-x+y-1)-1
y'' = cosh(x+y-1)-1
y'' = cosh(-x+y-1)-1
y'' = sqrt(x+y)
y'' = sqrt(2x+y)
y'' = 1/sqrt(x+y)
y'' = 1/sqrt(2x+y)
y'' = cbrt(x+y)
y'' = cbrt(2x+y)
y'' = 1/cbrt(x+y)
y'' = 1/cbrt(2x+y)
y'' = (x+y)^1.5
y'' = (x+y)^2.5
y'' = (x+y)^3.5
y'' = 1/(x+y)^1.5
y'' = 1/(x+y)^2.5
y'' = 1/(x+y)^3.5
y'' = 1/(x+y)^4
y'' = sqrt(x+y+1)
y'' = sqrt(2x+y+1)
y'' = 1/sqrt(x+y+1)
y'' = 1/sqrt(2x+y+1)
y'' = cbrt(x+y+1)
y'' = cbrt(2x+y+1)
y'' = 1/cbrt(x+y+1)
y'' = 1/cbrt(2x+y+1)
y'' = (x+y+1)^1.5
y'' = (x+y+1)^2.5
y'' = (x+y+1)^3.5
y'' = 1/(x+y+1)^1.5
y'' = 1/(x+y+1)^2.5
y'' = 1/(x+y+1)^3.5
y'' = 1/(x+y+1)^4
y'' = x*sqrt(x+y+1)
y'' = x*sqrt(2x+y+1)
y'' = x/sqrt(x+y+1)
y'' = x/sqrt(2x+y+1)
y'' = x*cbrt(x+y+1)
y'' = x*cbrt(2x+y+1)
y'' = x/cbrt(x+y+1)
y'' = x/cbrt(2x+y+1)
y'' = x*(x+y+1)^0.5
y'' = x*(x+y+1)^1.5
y'' = x*(x+y+1)^2.5
y'' = x*(x+y+1)^3.5
y'' = x*(x+y+1)^4
y'' = x*(x+y+1)^0.5
y'' = x/(x+y+1)^1.5
y'' = x/(x+y+1)^2.5
y'' = x/(x+y+1)^3.5
y'' = x/(x+y+1)^4
......
y'' = (x-1)*sqrt(x+y+1)
y'' = (x-1)*sqrt(2x+y+1)
y'' = (x-1)/sqrt(x+y+1)
y'' = (x-1)/sqrt(2x+y+1)
y'' = (x-1)*cbrt(x+y+1)
y'' = (x-1)*cbrt(2x+y+1)
y'' = (x-1)/cbrt(x+y+1)
y'' = (x-1)/cbrt(2x+y+1)
y'' = (x-1)*(x+y+1)^0.5
y'' = (x-1)*(x+y+1)^1.5
y'' = (x-1)*(x+y+1)^2.5
y'' = (x-1)*(x+y+1)^3.5
y'' = (x-1)/(x+y+1)^1.5
y'' = (x-1)/(x+y+1)^2.5
y'' = (x-1)/(x+y+1)^3.5
y'' = (x-1)/(x+y+1)^4
y'' = (x^2-1)*sqrt(x+y+1)
y'' = (x^2-1)*sqrt(2x+y+1)
y'' = (x^2-1)/sqrt(x+y+1)
y'' = (x^2-1)/sqrt(2x+y+1)
y'' = (x^2-1)*cbrt(x+y+1)
y'' = (x^2-1)*cbrt(2x+y+1)
y'' = (x^2-1)/cbrt(x+y+1)
y'' = (x^2-1)/cbrt(2x+y+1)
y'' = (x^2-1)*(x+y+1)^0.5
y'' = (x^2-1)*(x+y+1)^2
y'' = (x^2-1)*(x+y+1)^3
y'' = (x^2-1)*(x+y+1)^4
y'' = (x^2-1)/(x+y+1)^0.5
y'' = (x^2-1)/(x+y+1)^2
y'' = (x^2-1)/(x+y+1)^3
y'' = (x^2-1)/(x+y+1)^4
y'' = (x^2-4x+4)*sqrt(x+y+1)
y'' = (x^2-4x+4)*sqrt(2x+y+1)
y'' = (x^2-4x+4)/sqrt(x+y+1)
y'' = (x^2-4x+4)/sqrt(2x+y+1)
y'' = (x^2-4x+4)*cbrt(x+y+1)
y'' = (x^2-4x+4)*cbrt(2x+y+1)
y'' = (x^2-4x+4)/cbrt(x+y+1)
y'' = (x^2-4x+4)/cbrt(2x+y+1)
y'' = (x^2-4x+4)*(x+y+1)^0.5
y'' = (x^2-4x+4)*(x+y+1)^1.5
y'' = (x^2-4x+4)*(x+y+1)^2.5
y'' = (x^2-4x+4)*(x+y+1)^3.5
y'' = (x^2-4x+4)/(x+y+1)^1.5
y'' = (x^2-4x+4)/(x+y+1)^2.5
y'' = (x^2-4x+4)/(x+y+1)^3.5
y'' = (x^2-4x+4)/(x+y+1)^4
y'' -y^4 =0
y'' -y^5 =0
y'' -y^6 =0
y'' -1/y^4 =0
y'' -1/y^5 =0
y'' -1/y^6 =0
y''*y' -y^5 =0
y''*y' -3y^6 =0
y''*y' -4y^n =0
y'' -x* y * y' =0
y'' -x^2* y * y' =0
y'' -x^3* y * y' =0
y'' -x^n* y * y' =0
y'' -y^3 *x =0
y'' -y^4 *x =0
y'' -y^5 *x =0
y'' -y^n *x =0
y'' -2y^4 *x =0
y'' -2y^5 *x =0
y'' -b*y^n *x =0
y'' -sqrt(x) *y* y' =0
y'' -2sqrt(x) *y* y' =0
y'' -x^2 *y* y'=0
y''- x^2*y *y' =0
y''- x^3*y * y''' =0
y''- x^4*y *y''' =0
y'' +x*y*y' -x^2=0
y'' -x*y*y' +x^2=0
y'' - y^2 -x^2=0
y''- 2y^2 -8x^2=0
y'' +b*y^2 +c x^2=0
y'' y' -exp(x)*y^2=0
y''-exp(x)*y^2=0
exp(x)*y''- y^2=0
(x)*y''- y^2=0
(x) *y'' - y^3=0
(x^2)*y''- y^3=0
(x^n)*y''- y^2=0
exp(x)*y''- y*y'=0
exp(x)*y''- y*y'=0
y''-exp(x)*y*y'=0
y''-exp(x)*y*y'=0
y'' -exp(x)*y'=0
y'*y'' -x*y =0
y'*y'' -x^2*y^2 =0
y'*y'' -x^m*y^n =0
y^2*y'' -x =0
y^2*y'' -a*x^2 =0
y^2*y'' -x^2=0
y^2*y'' -x^3=0
y^2*y'' -x^n=0
y^2*y'' -(1+x)^2=0
y^2*y'' -(2+x)^3=0
y^2*y'' -(3+x)^n=0
exp(x)*y'' - y*y'=0
2exp(x)*y'' - y*y'=0
y^3*y'' -x=0
y^3*y'' -a*x^2 =0
y^3*y'' -x^2=0
y^3*y'' -x^3=0
y^3*y'' -x^n=0
y*y'*y'' =x
y*y'*y'' =x^2
y*y'*y'' =x^3
y*y'*y'' =x^n
y'' = exp(x)*y^2
y'' = exp(x-1)*y^2
y'' = exp(x-c)*y^2
y'' = exp(x)*y^3
y'' = exp(x-1)*y^3
y'' = exp(x-c)*y^3
y'' = exp(x)*y^n
y'' = exp(x-1)*y^n
y'' = exp(x-c)*y^n
y'' = exp(y-x-c)
y'' = exp(y)*x
y'' = exp(y-x)*x
y'' = exp(y-x-c)*x
y'' = exp(y-x-1)*x^2
y'' = exp(y-2x-c)*x^3
y'' = exp(y-3x-c)*x^4
y'' = exp(y-x-c)*x^5
y'' = exp(y)*x^n
y'' = exp(y-x)*x^n
y'' = exp(y-x-c)*x^n
y'' = exp(y-x^2-1)+2
y'' = exp(y-x^2-x-2)+2
y'' = exp(y-x^3-x-3)+6x
y'' = exp(y-x^2-c)+2
y'' = exp(y-x^2-x-c)+2
y'' = exp(y-x^3-x-c)+6x
y^2 *y''-x^2-4x-4=0
y^2 *y''-x^2-4x=0
y^2 *y''-x^2-4=0
1/y^2 *y''-x^2-4x-4=0
1/y^2 *y''-x^2-4x=0
1/y^2 *y''-x^2-4=0
y^4 *y''-x^2-4x-4=0
y^4 *y''-x^2-4x=0
y^4 *y''-x^2-4=0
1/y^4 *y''-x^2-4x-4=0
1/y^4 *y''-x^2-4x=0
1/y^4 *y''-x^2-4=0
y^(1/2) *y''-x^2-4x-4=0
y^(1/2) *y''-x^2-4x=0
y^(1/2) *y''-x^2-4=0
1/y^(1/2) *y''-x^2-4x-4=0
1/y^(1/2) *y''-x^2-4x=0
1/y^(1/2) *y''-x^2-4=0
y*y'' -2x^2-x-1=0
y*y'' -x^2=0
y*y'' -x^3=0
y*y'' -x^n=0
y*y'' -(1+x)*(x-2)=0
y*y'' -(1+x)*(2x+1)=0
y*y'' -(1+x)^2=0
y*y'' -(2+x)^3=0
y*y'' -(3+x)^n=0
y*y'' -2x^2-b* x-c =0
y* y''-x^3-3x^2-3x-1=0
y* y''-3x^2-3x-1=0
y* y''-3x-1=0
y* y''-x^2-b*x-c =0
y* y''-x^2-b*x =0
y* y''-x^2-c =0
y* y''-a*x^2-b*x-c =0
y* y''-a*x^2-b*x =0
y* y''-a*x^2-c =0
y* y''-x-c =0
y* y''-b*x-c =0
y'' *(y-1)-x^2-4x-4 =0
y'' *(y-1)-4x^2-4x-1 =0
y'' *(y-1)-x^2- 4 =0
y'' *(2y-1)-x^2-4x-4 =0
y'' *(2y-1)-4x^2-4x-1 =0
y'' *(2y-1)-x^2- 4 =0
y'' *(2y-1)-4x-4 =0
y'' *(2y-1)-x^2 =0
y'' *(2y-1)-x =0
y'' *(y-x-1)-x^2-4x-4 =0
y'' *(y-x-1)-4x^2-4x-1 =0
y'' *(y-x-1)-x^2- 4 =0
y'' *(y-2x-1)-x^2-4x-4 =0
y'' *(y-2x-1)-4x^2-4x-1 =0
y'' *(y-2x-1)-x^2- 4 =0
y*y'' -x -y'*x =0
y*y'' -4x -y'*x =0
y*y'' -x -2y'*x =0
y*y'' -4x -2y'*x =0
y''^2+x^2*y''-2y=0
y''^2+x^2*y''-2y=1
y''^2+x^2*y''-2y=2
y''^2+2x^2*y''-4y=0
y''^2+2x^2*y''-4y=1
y''^2+2x^2*y''-4y=2
Third order ode
It cannot seem to solve the high order nonlinear ODE.
y'''= y''^2-y'*y
y'''= 2y''^2-2y'*y
y'''= 3y''^2-3y'*y
y'''= -y''^2+y'*y
y'''= -2y''^2+2y'*y
y'''= -3y''^2+3y'*y
y''' -y^2 =0
y''' -y^3 =0
y''' -y^4 =0
y''' -y^5 =0
y''' -y^n =0
y''' -sqrt(y) =0
y''' -cbrt(y) =0
y''' = exp(y)
y''' -sqrt(x+y) =0
y''' -cbrt(x+y) =0
y''' = exp(x+y)
y''' -sqrt(x^2+y) =0
y''' -cbrt(x^2+y) =0
y''' = exp(x^2+y)
y''' -sqrt(x^2+x+y) =0
y''' -cbrt(x^2+x+y) =0
y''' = exp(x^2+x+y)
y''' -sqrt(y+1) =0
y''' -cbrt(y+1) =0
y''' = exp(y+1)
y''' -sqrt(x+y+1) =0
y''' -cbrt(x+y+1) =0
y''' = exp(x+y+1)
y''' -sqrt(x^2+y+1) =0
y''' -cbrt(x^2+y+1) =0
y''' = exp(x^2+y+1)
y''' -sqrt(x^2+x+y+1) =0
y''' -cbrt(x^2+x+y+1) =0
y''' = exp(x^2+x+y+1)
y''' -2y^2 =0
y''' -3y^3 =0
y''' -4y^4 =0
y''' -5y^5 =0
y''' -a*y^n =0
y''' -1/y =0
y''' -1/y^2 =0
y''' -1/y^3 =0
y''' -1/y^4 =0
y''' -1/y^5 =0
y''' -1/sqrt(y) =0
y''' -1/cbrt(y) =0
y''' = 1/exp(y)
y''' -2y^2 *x =0
y''' -3y^3 *x =0
y''' -4y^4 *x =0
y''' -5y^5 *x =0
y''' -y^n *x =0
y''' -y^m *x =0
y''' -2y^2 *x^2 =0
y''' -2y^3 *x^2 =0
y''' -2y^4 *x^2 =0
y''' -y^5 *x^2 =0
y''' -b*y^n *x^2 =0
y'''-y^2-x^2 =0
y'''-y^2-4x^2 =0
y'''-y^2-x^4 =0
y'''-y^2-4x^4 =0
y'''-x*y^2-x^3 =0
y'''-x^2*y^2-x^4 =0
y'''-x*y^2-x^2* y=0
y'''-x^2*y^2-x^3* y =0
y''' -b*y^m *x^n =0
x*y''' -y* y' =0
x^2*y''' -y* y' =0
y''' -x *y* y' =0
y''' -2x *y* y' =0
y'''' -x *y* y'' =0
y''' -x *y* y' =0
y''' -x^2 *y* y'' =0
y''' -x^3 *y* y'' =0
y''' -x^2 *y* y'' =0
y''' -sqrt(x) *y* y' =0
y''' -sqrt(x) *y* y' =0
y''' -x^2*y * y''' =0
y''' -x^a *y* y''=0
y'''-x^2*y'-x*y-x^2=0
y'''-x^2*y'-x*y-2x^2=0
y'''-x^2*y'-x*y-3x^2=0
y'''-x^2*y'-x*y-c*x^2=0
y'''-x^3*y'-x^2*y-x^3=0
y'''-x^3*y'-x^2*y-2*x^3=0
y'''-x^3*y'-x^2*y-3*x^3=0
y'''-x^3*y'-x^2*y-c*x^3=0
y'''-x*y'-x*y-x =0
y'''-x*y'-x*y-x^2=0
y'''-x*y'-x*y-x^3=0
y''' -x*y'-x*y-x^n=0
y''' -exp(x)*y^2=0
y''' -exp(x)*y^3=0
y''' -exp(x)*y^n=0
exp(x)*y''- y * y''' =0
exp(x) *y''' - y^2=0
exp(x)* y''' - y^3=0
exp(x)* y''' - y^n=0
(x) *y''' - y^2=0
(x) * y''' - y^2=0
(x) * y''' - y^3=0
(x) * y''' - y^p=0
(x^2) *y''' - y^2=0
(x^2) *y''' - y^3=0
(x^n) *y''' - y^2=0
(x^n) *y''' - y^3=0
(x^n)* y''' - y^p=0
y''' -exp(x)*y*y'=0
y''' +exp(x)*y*y'=0
y''' - y*y'=0
exp(x) * y''' - y*y'=0
y''' -exp(x) *y' =0
y''' -exp(x)*y * y'' =0
y''' -exp(x)*y * y' =0
exp(x)*y''' - y * y'' =0
exp(x) * y''' - y* y''=0
3exp(x)*y''- y * y''' =0
4exp(x)*y''' - y * y'' =0
a*exp(x) * y''' - y * y'' =0
y'*y''' -x^2 =0
y'*y''' -x^3 =0
y'*y''' -x^4 =0
y'*y''' -x^m =0
y'*y''' -x-c =0
y'*y''' -x^2 -b*x=0
y'*y''' -a*x^2 -b*x-c=0
y'*y''' -x*y =0
y'*y''' -x^2*y^2 =0
y'*y''' -x^m*y^n =0
y^2*y''' -x^2=0
y^2*y''' -x^3=0
y^2*y''' -x^n=0
y^2*y''' -(1+x)^2=0
y^2*y''' -(2+x)^3=0
y^2*y''' -(3+x)^n=0
y^3*y''' -x^2=0
y^3*y''' -x^3=0
y^3*y''' -x^n=0
y^m*y'' -x^n =0
y^m*y''' -x^n =0
y*y'*y''' =x
y*y'*y''' =x^2
y*y'*y''' =x^3
y*y'*y''' =x^n
y*y''*y''' =x
y*y''*y''' =x^2
y*y''*y''' =x^3
y*y''*y''' =x^n
y'*y''*y''' =x
y'*y''*y''' =x^2
y'*y''*y''' =x^3
y'*y''*y''' =x^n
y''' = exp(x)*y^2
y''' = exp(x-1)*y^2
y''' = exp(x-2)*y^2
y''' = exp(x-3)*y^2
y''' = exp(x-c)*y^2
y''' = exp(x)*y^3
y''' = exp(x-1)*y^3
y''' = exp(2x-2)*y^3
y''' = exp(x-3)*y^3
y''' = exp(2x-c)*y^3
y''' = exp(x)*y^m
y''' = exp(a*x-b)*y^m
y''' = exp(y-3x^2-3x-1)
y''' = sqrt(y-3x^2-3x-1)
y''' = cbrt(y-3x^2-3x-1)
y''' = sin(y-3x^2-3x-1)
y''' = sinh(y-3x^2-3x-1)
y''' = exp(y-x^3-3x^2-3x-1)+6
y''' = sqrt(y-x^3-3x^2-3x-1)+6
y''' = cbrt(y-x^3-3x^2-3x-1)+6
y''' = sin(y-x^3-3x^2-3x-1)+6
y''' = tan(y-x^3-3x^2-3x-1)+6
y''' = sinh(y-x^3-3x^2-3x-1)+6
y''' = tanh(y-x^3-3x^2-3x-1)+6
y'*y''' = exp(x)
y'*y''' = exp(x-1)
y'*y''' = exp(x-2)
y'*y''' = exp(x-3)
y'*y''' = exp(x-c)
y'*y''*y''' = exp(x)
y'*y'' = exp(x)*y'''
y''*y''' = exp(x)*y'
y'*y''' = exp(x)*y''
y''' = exp(x) *y' *y''
y''' = exp(x) *y' *y
y''' = exp(x) *y'' *y
y''' = exp(x+y)
y''' = exp(x)*y'
y''' = exp(x)*y''
y''' = exp(y)
y''' = exp(y-1)
y''' = 2exp(y)
y''' = 3exp(y-1)
y''' = y' exp(y)
y''' = y'' exp(y)
y''' y' = exp(y)
y''' y''= exp(y)
y''' = exp(y)
y''' = a *exp(y+c)
y''' = y' *exp(y+c)
y'''* y'' = exp(y+c)
y*y''' -x^2=0
y*y''' -x^3=0
y*y''' -x^n=0
y*y''' -(1+x)*(x+2)*(x+3)=0
y*y''' -(1+x)*(2x+1)*(3x+1)=0
y*y''' -(1+x)^2=0
y*y''' -(2+x)^3=0
y*y''' -(3+x)^n=0
y*y''' -3x^3-b*x^2-c*x-d =0
y*y'''-6x^3-2x^2-2x-1 =0
y*y'''-2x^3-2x^2-2x =0
y*y'''-x^3-2x^2-2x-1 =0
y*y'''-x^3-b*x^2-c*x-d =0
y*y'''-x^3-b*x^2-c*x =0
y*y'''-x^3-b*x^2 =0
y*y'''-x^3-b*x^2-d =0
y*y'''-x^3-c*x-d =0
y*y'''-a*x^3-b*x^2-c*x-d =0
y*y'''-a*x^3-b*x^2-c*x =0
y*y'''-a*x^3-b*x^2 =0
y*y'''-a*x^3-b*x^2-d =0
y*y'''-a*x^3-c*x-d =0
y*y'''- x^2 =0
y*y'''- 2x^2 =0
y*y'''- 3x^2 =0
y*y'''- a*x^2 =0
y* y'''-x^n =0
y* y'''-2x^n =0
y* y'''-3x^n =0
y* y'''-a*x^n-b*x-c =0
y*y'''-y^3-x^2 =0
y*y'''-y^3-4x^2 =0
y*y'''-y^3-x^4 =0
y*y'''-y^3-4x^4 =0
y*y'''-x*y^3-x^3 =0
y*y'''-x^2*y^3-x^2 =0
y*y'''-x*y^3-x^4=0
y*y'''-x^2*y^3-x^6=0
y*y'''-x*y^3-4x^3 =0
y*y'''-x^2*y^3-4x^2 =0
y*y'''-x*y^3-4x^4=0
y*y'''-x^2*y^3-4x^6=0
y*y''' -x -y' =0
y*y''' -2x -y' =0
y*y''' -x -2y' =0
y*y''' -4x -2y' =0
y*y''' -x -y''*x =0
y*y''' -2x -y''*x =0
y*y''' -x -2y''*x =0
y*y''' -4x -2y''*x =0
y'''+y* y''-3x^2-3x-1=0
y'''+y* y''-3x^2-1=0
y'''+y* y''-x^2-b*x-c =0
y'''+y* y''-x^2-b*x =0
y'''+y* y''-x^2-c =0
y'''+y* y''-a*x^2-b*x-c =0
y'''+y* y''-a*x^2-b*x =0
y'''+y* y''-a*x^2-c =0
......
high order >3 ODE
if the order of all above equations changed to high order, wolfram cannot solve too.
y*y'''' -x^2=0
y*y'''' -x^3=0
y*y'''' -x^n=0
y*y'''' -(1+x)*(x+2)*(x+3)*(x+4)=0
y*y'''' -(1+x)*(2x+1)*(x+2)*(x+3)=0
y*y'''' -(1+x)^2=0
y*y'''' -(2+x)^3=0
y*y'''' -(3+x)^n=0
y*y'''' -a*x^4-b*x^3-c*x^2-d*x-f =0
y'*y'''' -x^2 =0
y'*y'''' -x^3 =0
y'*y'''' -x^4 =0
y'*y'''' -x^m =0
y'*y'''' -x^2 -4x-4=0
y'*y'''' -x^3 -b*x^2-c*x=0
y'*y'''' -a*x^3 -b*x^2-c*x+f=0
y'*y'''' -x*y =0
y'*y'''' -x^2*y^2 =0
y'*y'''' -x^m*y^n =0
y''*y'''' -x^2 -b*x-c=0
y''*y'''' -x^2-c*x=0
y''*y'''' -x-c =0
y''*y'''' -b*x^2-c*x+f=0
y''*y'''' -x^2*y^2 =0
y''*y'''' -x^m*y^n =0
... ...
fractional order
if the order of all these equations changed to fractional order, wolfram cannot solve too.
It cannot solve fractional calculus
fractional order differential equations ,
pi-order differential equations,
negative order differential equations,
complex order differential equations,
variable order differential equations
fractional order integral equations,
double integral equations,
fractional order partial integral equations,
complex order partial differential equations,
Equation of mixed Fractional differential and integral orders
Equation of mixed Fractional partial differential and integral orders
partial differential equation
if adding a term to above equations become the partial differential equations, wolfram has the same problem.
high order partial differential equations
fractional order partial differential equations,
mathHand.com can solve all above and below examples.
wolfram also cannot solve or cannot find simple solution in over 110 examples as follows:
See Also