info prev up next book cdrom email home

Chord

\begin{figure}\begin{center}\BoxedEPSF{ChordDiagram.epsf}\end{center}\end{figure}

The Line Segment joining two points on a curve. The term is often used to describe a Line Segment whose ends lie on a Circle. In the above figure, $r$ is the Radius of the Circle, $a$ is called the Apothem, and $s$ the Sagitta.

\begin{figure}\begin{center}\BoxedEPSF{Sector.epsf}\BoxedEPSF{Segment.epsf}\end{center}\end{figure}

The shaded region in the left figure is called a Sector, and the shaded region in the right figure is called a Segment.


All Angles inscribed in a Circle and subtended by the same chord are equal. The converse is also true: The Locus of all points from which a given segment subtends equal Angles is a Circle.


\begin{figure}\begin{center}\BoxedEPSF{Chord.epsf}\end{center}\end{figure}

Let a Circle of Radius $R$ have a Chord at distance $r$. The Area enclosed by the Chord, shown as the shaded region in the above figure, is then

\begin{displaymath}
A=2\int_0^{\sqrt{R^2-r^2}} x(y)\,dy.
\end{displaymath} (1)

But
\begin{displaymath}
y^2+(r+x)^2=R^2,
\end{displaymath} (2)

so
\begin{displaymath}
x(y)=\sqrt{R^2-y^2}-r
\end{displaymath} (3)

and


$\displaystyle A$ $\textstyle =$ $\displaystyle 2\int_0^{\sqrt{R^2-r^2}} (\sqrt{R^2-y^2}\,-r)\,dy$  
  $\textstyle =$ $\displaystyle \left[{y\sqrt{R^2-y^2}+R^2\tan^{-1}\left({y\over\sqrt{R^2-y^2}}\right)-2ry}\right]_0^{\sqrt{R^2-r^2}}$  
  $\textstyle =$ $\displaystyle r\sqrt{R^2-r^2}+R^2\tan^{-1}\left[{\left({R\over r}\right)^2-1}\right]-2r\sqrt{R^2-r^2}$  
  $\textstyle =$ $\displaystyle R^2\tan^{-1}\left[{\left({R\over r}\right)^2-1}\right]-r\sqrt{R^2-r^2}.$ (4)

Checking the limits, when $r=R$, $A=0$ and when $r\to 0$,
\begin{displaymath}
A={\textstyle{1\over 2}}\pi R^2,
\end{displaymath} (5)

See also Annulus, Apothem, Bertrand's Problem, Concentric Circles, Radius, Sagitta, Sector, Segment



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26