Let be a rational function
(1) |
For a Julia set with , the Capacity Dimension is
(2) |
Quadratic Julia sets are generated by the quadratic mapping
(3) |
See also Dendrite Fractal, Douady's Rabbit Fractal, Fatou Set, Mandelbrot Set, Newton's Method, San Marco Fractal, Siegel Disk Fractal
References
Dickau, R. M. ``Julia Sets.''
http://forum.swarthmore.edu/advanced/robertd/julias.html.
Dickau, R. M. ``Another Method for Calculating Julia Sets.''
http://forum.swarthmore.edu/advanced/robertd/inversejulia.html.
Douady, A. ``Julia Sets and the Mandelbrot Set.'' In The Beauty of Fractals: Images of Complex Dynamical Systems
(Ed. H.-O. Peitgen and D. H. Richter). Berlin: Springer-Verlag, p. 161, 1986.
Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press,
pp. 124-126, 138-148, and 177-179, 1991.
Peitgen, H.-O. and Saupe, D. (Eds.). ``The Julia Set,'' ``Julia Sets as Basin Boundaries,'' ``Other Julia Sets,'' and
``Exploring Julia Sets.'' §3.3.2 to 3.3.5 in The Science of Fractal Images.
New York: Springer-Verlag, pp. 152-163, 1988.
Schroeder, M. Fractals, Chaos, Power Laws. New York: W. H. Freeman, p. 39, 1991.
Wagon, S. ``Julia Sets.'' §5.4 in Mathematica in Action. New York: W. H. Freeman, pp. 163-178, 1991.
© 1996-9 Eric W. Weisstein