• hermite(n, x)—Hermite polynomial, or the solution of the following equation :
d2dx2y-2x⋅dydx+2n⋅y=0
• laguerre(n, x)—Laguerre polynomial, or the solution to the following equation :
x⋅d2dx2y+(1-x)⋅dydx+n⋅y=0
• legendre(n, x)—Legendre polynomial, or the solution to the following equation :
(1-x2)⋅d2dx2y-2x⋅dydx+n⋅(n+1)⋅y=0
• chebyshevT(n, x)—Chebyshev of the first kind, or the solution to the following equation :
(1-x2)⋅d2dx2y-x⋅dydx+n2⋅y=0
• chebyshevU(n, x)—Chebyshev of the second kind, solution to the following equation :
(1-x2)⋅d2dx2y-3x⋅dydx+n⋅(n+2)⋅y=0
• jacobi(n, a, b, x)—Jacobi with parameters a and b, solution to the following equation :
(1-x2)⋅d2dx2y+(b-a-(a+b+2)⋅x)⋅dydx+n⋅(n+a+b+1)⋅y=0
Chebyshev and Legendre polynomials are special cases of the Jacobi polynomials:
chebyshevU(n, x) = jacobi(n, 0,1, x)
legendre(n, x) = jacobi(n, 0,0, x)