AI math handbook calculator - Fractional Calculus Computer Algebra System software
Home
| list
| math
| function
| coding
| graphics
| example
| help
| 中文
+
+
+
=
Complex Function plot
With this tool you can visualize complex-valued functions
by assigning a color to each point in the complex plane
according to its argument/phase.
The identity function f(z)=z shows how colors are assigned.
Input box:
Enter any expression in z. Here are some example functions to try:
z
arctan(z)
re(arctan(z)) real part
im(arctan(z)) imag part
arctan(z-random())
z^4-1
(z^2-i)/(i*z-1)^2
sin(z)-e^(cos(z))
log(z)-sech(z-i)
(z-1)(conj(z)^2-conj(z)-1)
0.926(z-7.3857e-2*z^5-4.5458e-3*z^9)
special function: gamma(z) , zeta(z)
Jacobi Elliptic: sn(z,0.3) , cn(z,0.3) , dn(z,0.3)
Taylor Series: cos(z)=sum((-1)^n*z^(2n)/(2n)!,7) parameter must be n
Atomic Singular Inner Function: prod(e^((z*(e^(2*pi*i/5))^n)/(z-(e^(2*pi*i/5))^n)),5) parameter must be n
Iterated function: iter(z-z'^2,z,15)
Parameters: You can also use three parameters t,n,u in your function, e. g.
t, where 0 ≤ t ≤ 1,
u, where u = exp(i*s) and 0 ≤ s ≤ 2pi
n, with 0 ≤ n ≤ 30
Zoom In/Out:
Press button (+) to zoom in or (-) to zoom out. Alternatively use the mouse wheel. You can also change the view by dragging the plot.
Its independent variable must be z.
put mouse on the graph to show
Mouse z: (re,im) on upper left and values of f(z): (re,im) on upper right.
function :
random() , re(z) , im(z) , modulus(z) , arg(z) , recip(z) , neg(z) , conj(z) , disk(z) , floor(z) , ceil(z) , square(z) , cube(z) , sqrt(z) , exp(z) , log(z) ,
trig function :
sin(z) , cos(z) , tan(z) , cot(z) , sec(z) , csc(z) , sinh(z) , cosh(z) , tanh(z) , coth(z) , sech(z) , csch(z) ,
inverse trig function :
asin(z) , acos(z) , atan(z) , acot(z) , asec(z) , acsc(z) , asinh(z) , acosh(z) , atanh(z) , acoth(z) , asech(z) , acsch(z) ,
arcsin(z) , arccos(z) , arctan(z) , arccot(z) , arcsec(z) , arccsc(z) , arcsinh(z) , arccosh(z) , arctanh(z) , arccoth(z) , arcsech(z) , arccsch(z) ,
special function :
gamma(z) , pow(z, 2) , rationalBlaschke(z, 2) , mobius(z, 2, 3, 4, 5) , psymbol(z, 2) , binet(z) , joukowsky(z, 2, 3) , zeta(z) , dirichletEta(z) , binomial(z, 2) ,
sn(z, 0.2) , cn(z, 0.2) , dn(z, 0.2) , sum(z, 2) , prod(z, 2) , blaschke(z, 2) , iter(z, z, 3) ,
Complex
complex
- complex math
complex2D
re2D(log(x)) show 2 curves of real and imag values in real domain.
im2D(log(x)) show 2 curves of real and imag values in imag domain.
for complex 2 curves of real and imag values in real and imag domain.
complex coloring
color WebXR surface of complex function on complex plane
complex animate (z) or complex2D(z) for phase animation in complex plane, the independent variable must be z.
complex plot (z) for phase and/or modulus in complex plane, the independent variable must be z.
plot complex (z) for phase and/or modulus in complex plane, the independent variable must be z.
complex3D
complex function
Complex Branches
Riemann surface
complex3D (x) for 3 dimensional graph in real, imag and complex domain, where the independent variable must be x.
References
math handbook content 2 chapter 10 complex function
math handbook content 3 chapter 10 complex function
math handbook content 4 chapter 10 complex function
Complex analysis
See Also
f(z)= Phase Modulus Phase/Modulus None (+) Reset (-)