AI math handbook calculator - Fractional Calculus Computer Algebra System software
Home
| list
| math
| function
| coding
| graphics
| example
| help
| 中文
+
+
+
=
Complex function in real domain
plane curve in real domain
plot with re2D(x) for 2 curves of real and imag values. First curve is real value, second curve is imag value.
- re(pow(x,x) )
real value in real domain
- im(pow(x,x) )
imag value in real domain
- re2D(pow(x,x))
real and imag value in real domain
- re(sqrt(x)) real value in real domain
- im(sqrt(x)) imag value in real domain
- re2D(sqrt(x)) real and imag value in real domain
- for cbrt(x), input root(x,3)
- Exponential
function
- Natural
logarithm
Img value of Circular and Hyperbolic functions in real domain are 0. So only their inverse functions are shown :
- Circular
sine
- Circular
cosine
- Circular
tangent
- Circular
cotangent
- Circular
secant
- Circular
cosecant
- Hyperbolic
sine
- Hyperbolic
cosine
- Hyperbolic
tangent
- Hyperbolic
cotangent
- Hyperbolic
secant
- Hyperbolic
cosecant
- Bessel
function of first kind
- Bessel
function of second kind
- Modified
Bessel function of first kind
- Modified
Bessel function of second kind
- Hankel
function of first kind
- Hankel
function of second kind
- Airy
function of first kind
- Airy
function of second kind
- Elliptic
integral of first kind
- Elliptic
integral of second kind
- Elliptic
integral of third kind
- Jacobi
zeta function
- Jacobi
elliptic sine
- Jacobi
elliptic cosine
- Jacobi
delta amplitude
- Jacobi
amplitude
- Weierstrass
elliptic function
- Gamma
function
- Logarithm
of gamma function
- Riemann
zeta function
- Dirichlet
eta function
plane curve in imag domain
plot with im2D(x) for 2 curves of real and imag values. First curve is real value, second curve is imag value.
- re(sqrt(i*x)) real value in imag domain
- im(sqrt(i*x)) imag value in imag domain
- im2D(sqrt(x)) real and imag value in imag domain
- for cbrt(x), input root(x,3)
- im2D(x^x)
- re(exp(i*x)) real value in imag domain
- im(exp(i*x)) imag value in imag domain
- im2D(exp(x)) real and imag value in imag domain
- Natural logarithm log(x)
real value of Circular and Hyperbolic functions in imag domain are 0. So only their inverse functions are shown :
- Circular
sine
- Circular
cosine
- Circular
tangent
- Circular
cotangent
- Circular
secant
- Circular
cosecant
- Hyperbolic
sine
- Hyperbolic
cosine
- Hyperbolic
tangent
- Hyperbolic
cotangent
- Hyperbolic
secant
- Hyperbolic
cosecant
- Bessel
function of first kind
- Bessel
function of second kind
- Modified
Bessel function of first kind
- Modified
Bessel function of second kind
- Hankel
function of first kind
- Hankel
function of second kind
- Airy
function of first kind
- Airy
function of second kind
- Elliptic
integral of first kind
- Elliptic
integral of second kind
- Elliptic
integral of third kind
- Jacobi
zeta function
- Jacobi
elliptic sine
- Jacobi
elliptic cosine
- Jacobi
delta amplitude
- Jacobi
amplitude
- Weierstrass
elliptic function
- Gamma
function
- Logarithm
of gamma function
- Riemann
zeta function
- Dirichlet
eta function
- complexplot(z) surface 2D
- plotcomplex(z) surface 2D
- WebXR surface 2D
3D in real, imag and complex domain
- plot complex function with complex3D(sqrt(x)) in real, imag and complex domain.
Complex
complex
- complex math
- complex2D
- re2D(log(x)) show 2 curves of real and imag values in real domain.
- im2D(log(x)) show 2 curves of real and imag values in imag domain.
- for complex 2 curves of real and imag values in real and imag domain.
- complex coloring
- color WebXR surface of complex function on complex plane
- complex animate(z) or complex2D(z) for phase animation in complex plane, the independent variable must be z.
- complex plot(z) for phase and/or modulus in complex plane, the independent variable must be z.
- plot complex(z) for phase and/or modulus in complex plane, the independent variable must be z.
- complex3D
- complex function
- Complex Branches
- Riemann surface
- complex3D(x) for 3 dimensional graph in real, imag and complex domain, where the independent variable must be x.
References
- math handbook content 2 chapter 10 complex function
- math handbook content 3 chapter 10 complex function
- math handbook content 4 chapter 10 complex function
- Complex analysis
See Also