For every Positive Integer , there exists a Circle which contains exactly lattice points in its interior. H. Steinhaus proved that for every Positive Integer , there exists a Circle of Area which contains exactly lattice points in its interior.
Schinzel's Theorem shows that for every Positive Integer , there exists a Circle in the Plane
having exactly Lattice Points on its Circumference. The theorem also explicitly identifies
such ``Schinzel Circles'' as
(1) |
Let be the smallest Integer Radius of a Circle centered at the Origin (0, 0) with Lattice Points. In order to find the number of lattice points of the Circle, it is only necessary to find the number in the first octant, i.e., those with , where is the Floor Function. Calling this , then for , , so . The multiplication by eight counts all octants, and the subtraction by four eliminates points on the axes which the multiplication counts twice. (Since is Irrational, the Midpoint of a are is never a Lattice Point.)
Gauss's Circle Problem asks for the number of lattice points within a Circle of Radius
(2) |
(3) |
(4) |
The number of lattice points on the Circumference of circles centered at (0, 0) with radii 0, 1, 2, ... are 1, 4, 4, 4, 4, 12, 4, 4, 4, 4, 12, 4, 4, ... (Sloane's A046109). The following table gives the smallest Radius for a circle centered at (0, 0) having a given number of Lattice Points . Note that the high water mark radii are always multiples of five.
1 | 0 | 108 | 1,105 |
4 | 1 | 132 | 40,625 |
12 | 5 | 140 | 21,125 |
20 | 25 | 156 | 203,125 |
28 | 125 | 180 | 5,525 |
36 | 65 | 196 | 274,625 |
44 | 3,125 | 252 | 27,625 |
52 | 15,625 | 300 | 71,825 |
60 | 325 | 324 | 32,045 |
68 | 390,625 | 420 | 359,125 |
76 | 540 | 160,225 | |
84 | 1,625 | ||
92 | |||
100 | 4,225 |
If the Circle is instead centered at (1/2, 0), then the Circles of Radii 1/2, 3/2, 5/2, ... have 2, 2, 6, 2, 2, 2, 6, 6, 6, 2, 2, 2, 10, 2, ... (Sloane's A046110) on their Circumferences. If the Circle is instead centered at (1/3, 0), then the number of lattice points on the Circumference of the Circles of Radius 1/3, 2/3, 4/3, 5/3, 7/3, 8/3, ... are 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 1, 5, 3, ... (Sloane's A046111).
Let
Kulikowski's Theorem states that for every Positive Integer , there exists a 3-D Sphere which has
exactly Lattice Points on its surface. The Sphere is given by the equation
See also Circle, Circumference, Gauss's Circle Problem, Kulikowski's Theorem, Lattice Point, Schinzel Circle, Schinzel's Theorem
References
Honsberger, R. ``Circles, Squares, and Lattice Points.'' Ch. 11 in Mathematical Gems I.
Washington, DC: Math. Assoc. Amer., pp. 117-127, 1973.
Kulikowski, T. ``Sur l'existence d'une sphère passant par un nombre donné aux coordonnées entières.''
L'Enseignement Math. Ser. 2 5, 89-90, 1959.
Schinzel, A. ``Sur l'existence d'un cercle passant par un nombre donné de points aux coordonnées entières.''
L'Enseignement Math. Ser. 2 4, 71-72, 1958.
Sierpinski, W. ``Sur quelques problèmes concernant les points aux coordonnées entières.''
L'Enseignement Math. Ser. 2 4, 25-31, 1958.
Sierpinski, W. ``Sur un problème de H. Steinhaus concernant les ensembles de points sur le plan.'' Fund. Math. 46, 191-194,
1959.
Sierpinski, W. A Selection of Problems in the Theory of Numbers. New York: Pergamon Press, 1964.
Weisstein, E. W. ``Circle Lattice Points.'' Mathematica notebook CircleLatticePoints.m.
© 1996-9 Eric W. Weisstein