plot with complex3D( x ) in 3D space on complex plane
Hyperlinks lead to plots in two dimensions of the real and imaginary parts of functions on the real and imaginary axes, as well as visualizations in three dimensions of the real and imaginary parts and their absolute value on the complex plane.
The 3D graph can be zoom and rotated with mouse wheel.
Notice that Microsoft Internet Explorer IE did not support svg, so IE cannot show these graph, please use other browrer.
Real Function 实函数
abs(x,y) = hypo(x, y) = sqrt(x*x+y*y) — absolute value of real number
surd( x, n ) — real-valued root of a real number, n must be integer
hermite( n, x ) — Hermite polynomial of real or complex index n of a real or complex number
laguerre( n, x ) — Laguerre polynomial of real or complex index n of a real or complex number
laguerre( n, a, x ) — associated Laguerre polynomial of real or complex index n and real or complex argument a of a real or complex number
legendreP( l, x ) — Legendre polynomial of real or complex index l of a real or complex number
legendreP( l, m, x ) — associated Legendre polynomial of real or complex indices l and m of a real or complex number
legendreQ( l, x ) — Legendre function of the second kind of real or complex index l of a real or complex number
legendreQ( l, m, x ) — associated Legendre function of the second kind of real or complex indices l and m of a real or complex number
chebyshevT( n, x ) — Chebyshev polynomial of the first kind of real or complex index n of a real or complex number
chebyshevU( n, x ) — Chebyshev polynomial of the second kind of real or complex index n of a real or complex number
sphericalHarmonic( l, m, θ, φ ) — spherical harmonic of integer indices l and m and real numbers. Returns a complex number even if the result is purely real.
Elliptic Integrals 椭圆积分
ellipticF( x, m ) — incomplete elliptic integral of the first kind of a real or complex number with real or complex elliptic parameter m
ellipticF( m ) — complete elliptic integral of the first kind of a real or complex elliptic parameter m
ellipticK( m ) — complete elliptic integral of the first kind of a real or complex elliptic parameter m
ellipticE( x, m ) — incomplete elliptic integral of the second kind of a real or complex number with real or complex elliptic parameter m
ellipticE( m ) — complete elliptic integral of the second kind of a real or complex elliptic parameter m
ellipticPi( n, x, m ) — incomplete elliptic integral of the third kind of a real or complex number with real or complex characteristic n and elliptic parameter m
ellipticPi( n, m ) — complete elliptic integral of the third kind of a real or complex elliptic characteristic n and parameter m
jacobiZeta( x, m ) — Jacobi zeta function of a real or complex number with real or complex elliptic parameter m, with the first argument of the same type as for elliptic integrals
carlsonRC( x, y ) — degenerate Carlson symmetric elliptic integral of the first kind of real or complex numbers
carlsonRD( x, y, z ) — degenerate Carlson symmetric elliptic integral of the third kind, or Carlson elliptic integral of the second kind, of real or complex numbers
carlsonRF( x, y, z ) — Carlson symmetric elliptic integral of the first kind of real or complex numbers
carlsonRG( x, y, z ) — Carlson completely symmetric elliptic integral of the second kind of real or complex numbers
carlsonRJ( x, y, z, w ) — Carlson symmetric elliptic integral of the third kind of real or complex numbers
Elliptic Functions 椭圆函数
jacobiTheta( n, x, q ) — Jacobi theta function n of a real or complex number with real or complex nome q
ellipticNome( m ) — elliptic nome q of a real or complex elliptic parameter m
am( x, m ) — Jacobi amplitude of a real or complex number with real or complex elliptic parameter m
sn( x, m ) — Jacobi elliptic sine of a real or complex number with real or complex elliptic parameter m
cn( x, m ) — Jacobi elliptic cosine of a real or complex number with real or complex elliptic parameter m
dn( x, m ) — Jacobi delta amplitude of a real or complex number with real or complex elliptic parameter m
weierstrassRoots( g2, g3 ) — Weierstrass roots e1, e2 and e3 for real or complex invariants. Returned as an array.
weierstrassHalfPeriods( g2, g3 ) — Weierstrass half periods w1 and w3 for real or complex invariants. Returned as an array. Consistent with evaluation of Weierstrass elliptic function in terms of Jacobi elliptic sine.
weierstrassInvariants( w1, w3 ) — Weierstrass invariants g2 and g3 for real or complex half periods. Returned as an array.
weierstrassP( x, g2, g3 ) — Weierstrass elliptic function ℘ of a real or complex number with real or complex invariants. Returned as a complex number for consistency.
weierstrassPPrime( x, g2, g3 ) — derivative of the Weierstrass elliptic function ℘ of a real or complex number with real or complex invariants. Returned as a complex number for consistency.
inverseWeierstrassP( x, g2, g3 ) — inverse Weierstrass elliptic function ℘ of a real or complex number with real or complex invariants. Returned as a complex number for consistency.
kleinJ( x ) — Klein j-invariant of a complex number
Hypergeometric Functions 超几何函数
hypergeometric0F1( a, x ) — confluent hypergeometric function of a real or complex parameter a of a real or complex number
hypergeometric1F1( a, b, x ) — confluent hypergeometric function of the first kind of real or complex parameters a and b of a real or complex number
hypergeometricU( a, b, x ) — confluent hypergeometric function of the second kind of real or complex parameters a and b of a real or complex number
whittakerM( k, m, x ) — Whittaker function of the first kind of real or complex parameters k and m of a real or complex number
whittakerW( k, m, x ) — Whittaker function of the second kind of real or complex parameters k and m of a real or complex number
hypergeometric2F1( a, b, c, x ) — Gauss hypergeometric function of real or complex parameters a, b and c of a real or complex number
hypergeometric1F2( a, b, c, x ) — hypergeometric function of real or complex parameters a, b and c of a real or complex number
hypergeometricPFQ( A, B, x ) — generalized hypergeometric function of arrays of real or complex parameters A and B of a real or complex number
Gamma Functions 伽马函数
beta( x, y ) — beta function of real or complex numbers
beta( x, y, z ) — incomplete beta function Bx(y,z) of real or complex numbers, where x = 1 replicates the beta function
beta( x, y, z, w ) — generalized incomplete beta function By(z,w) − Bx(z,w) of real or complex numbers
betaRegularized( x, y, z ) — regularized incomplete beta function Ix(y,z) of real or complex numbers
betaRegularized( x, y, z, w ) — generalized regularized incomplete beta function Iy(z,w) − Ix(z,w) of real or complex numbers