info prev up next book cdrom email home

Spherical Coordinates

\begin{figure}\begin{center}\BoxedEPSF{curv_coords_Spherical.epsf scaled 1200}\end{center}\end{figure}

A system of Curvilinear Coordinates which is natural for describing positions on a Sphere or Spheroid. Define $\theta$ to be the azimuthal Angle in the $xy$-Plane from the x-Axis with $0\leq\theta<2\pi$ (denoted $\lambda$ when referred to as the Longitude), $\phi$ to be the polar Angle from the z-Axis with $0\leq\phi\leq\pi$ (Colatitude, equal to $\phi=90^\circ-\delta$ where $\delta$ is the Latitude), and $r$ to be distance (Radius) from a point to the Origin.


Unfortunately, the convention in which the symbols $\theta$ and $\phi$ are reversed is frequently used, especially in physics, leading to unnecessary confusion. The symbol $\rho$ is sometimes also used in place of $r$. Arfken (1985) uses $(r, \phi,
\theta)$, whereas Beyer (1987) uses $(\rho, \theta, \phi)$. Be very careful when consulting the literature.


In this work, the symbols for the azimuthal, polar, and radial coordinates are taken as $\theta$, $\phi$, and $r$, respectively. Note that this definition provides a logical extension of the usual Polar Coordinates notation, with $\theta$ remaining the Angle in the $xy$-Plane and $\phi$ becoming the Angle out of the Plane.

$\displaystyle r$ $\textstyle =$ $\displaystyle \sqrt{x^2+y^2+z^2}$ (1)
$\displaystyle \theta$ $\textstyle =$ $\displaystyle \tan^{-1}\left({y\over x}\right)$ (2)
$\displaystyle \phi$ $\textstyle =$ $\displaystyle \sin^{-1}\left({\sqrt{x^2+y^2}\over r}\right)= \cos^{-1}\left({z\over r}\right),$ (3)

where $r \in [0, \infty)$, $\theta \in [0, 2\pi)$, and $\phi \in [0, \pi]$. In terms of Cartesian Coordinates,
$\displaystyle x$ $\textstyle =$ $\displaystyle r\cos\theta\sin\phi$ (4)
$\displaystyle y$ $\textstyle =$ $\displaystyle r\sin\theta\sin\phi$ (5)
$\displaystyle z$ $\textstyle =$ $\displaystyle r\cos\phi.$ (6)

The Scale Factors are
$\displaystyle h_r$ $\textstyle =$ $\displaystyle 1$ (7)
$\displaystyle h_\theta$ $\textstyle =$ $\displaystyle r\sin\phi$ (8)
$\displaystyle h_\phi$ $\textstyle =$ $\displaystyle r,$ (9)

so the Metric Coefficients are
$\displaystyle g_{rr}$ $\textstyle =$ $\displaystyle 1$ (10)
$\displaystyle g_{\theta\theta}$ $\textstyle =$ $\displaystyle r^2\sin^2 \phi$ (11)
$\displaystyle g_{\phi\phi}$ $\textstyle =$ $\displaystyle r^2.$ (12)

The Line Element is
\begin{displaymath}
d{\bf s} = dr \hat{\bf r} + r\,d\phi\,\hat{\boldsymbol{\phi}} + r\sin \phi\,d\theta\,\hat {\boldsymbol{\theta}},
\end{displaymath} (13)

the Area element
\begin{displaymath}
d{\bf a} = r^2 \sin \phi\,d\theta\,d\phi\,\hat{\bf r},
\end{displaymath} (14)

and the Volume Element
\begin{displaymath}
dV = r^2 \sin \phi\,d\theta\,d\phi\,dr.
\end{displaymath} (15)

The Jacobian is
\begin{displaymath}
\left\vert{\partial (x,y,z)\over\partial(r,\theta,\phi)}\right\vert = r^2\vert\sin\phi\vert.
\end{displaymath} (16)


The Position Vector is

\begin{displaymath}
{\bf r} \equiv\left[{\matrix{r\cos\theta\sin\phi\cr r\sin\theta\sin\phi\cr r\cos\phi\cr}}\right],
\end{displaymath} (17)

so the Unit Vectors are
$\displaystyle \hat {\bf r}$ $\textstyle \equiv$ $\displaystyle {{d{\bf r}\over dr}\over \left\vert{d{\bf r}\over dr}\right\vert}...
...array}{c}\cos\theta\sin\phi\\  \sin\theta\sin\phi\\  \cos\phi\end{array}\right]$ (18)
$\displaystyle \hat {\boldsymbol{\theta}}$ $\textstyle \equiv$ $\displaystyle {{d{\bf r}\over d\theta}\over \left\vert{d{\bf r}\over d\theta}\r...
...\vert} = \left[\begin{array}{c}-\sin\theta\\  \cos\theta\\  0\end{array}\right]$ (19)
$\displaystyle \hat {\boldsymbol{\phi}}$ $\textstyle \equiv$ $\displaystyle {{d{\bf r}\over d\phi}\over \left\vert{d{\bf r}\over d\phi }\righ...
...ray}{c}\cos\theta\cos\phi\\  \sin\theta\cos\phi\\  -\sin\phi\end{array}\right].$ (20)


Derivatives of the Unit Vectors are

$\displaystyle {\partial\hat {\bf r}\over\partial r}$ $\textstyle =$ $\displaystyle {\bf0}$ (21)
$\displaystyle {\partial\hat {\boldsymbol{\theta}}\over\partial r}$ $\textstyle =$ $\displaystyle {\bf0}$ (22)
$\displaystyle {\partial\hat {\boldsymbol{\phi}}\over\partial r}$ $\textstyle =$ $\displaystyle {\bf0}$ (23)
$\displaystyle {\partial\hat {\bf r}\over\partial\theta}$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}-\sin\theta\sin\phi\\  \cos\theta\sin\phi\\  0\end{array}\right] =\sin\phi\,\hat{\boldsymbol{\theta}}$ (24)
$\displaystyle {\partial\hat {\boldsymbol{\theta}}\over\partial\theta}$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}-\cos\theta\\  -\sin\theta\\  0\end{array}\right]=-\cos\phi\,\hat{\boldsymbol{\phi}}-\sin\phi\,\hat{\bf r}$ (25)
$\displaystyle {\partial\hat {\boldsymbol{\phi}}\over\partial\theta}$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}-\sin\theta\cos\phi\\  \cos\theta\cos\phi\\  0\end{array}\right]=\cos\phi\,\hat{\boldsymbol{\theta}}$ (26)
$\displaystyle {\partial\hat {\bf r}\over\partial\phi }$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}\cos\theta\\  \sin\theta\cos\phi\\  -\sin\phi\end{array}\right] =\hat {\boldsymbol{\phi}}$ (27)
$\displaystyle {\partial\hat {\boldsymbol{\theta}}\over\partial\phi}$ $\textstyle =$ $\displaystyle {\bf0}$ (28)
$\displaystyle {\partial\hat {\boldsymbol{\phi}}\over\partial\phi}$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}-\cos\theta\sin\phi\\  -\sin\theta\sin\phi\\  -\cos\phi\end{array}\right]=- \hat {\bf r}.$ (29)


The Gradient is

\begin{displaymath}
\nabla = \hat{\bf r}{\partial\over\partial r} + {1\over r}\h...
...in\phi}\hat{\boldsymbol{\theta}}{\partial\over\partial\theta},
\end{displaymath} (30)

so
$\displaystyle \nabla_r \hat {\bf r}$ $\textstyle =$ $\displaystyle {\bf0}$ (31)
$\displaystyle \nabla_r \hat {\boldsymbol{\theta}}$ $\textstyle =$ $\displaystyle {\bf0}$ (32)
$\displaystyle \nabla_r \hat {\boldsymbol{\phi}}$ $\textstyle =$ $\displaystyle \hat {\bf0}$ (33)
$\displaystyle \nabla_\theta \hat {\bf r}$ $\textstyle =$ $\displaystyle {\sin\phi\,\hat {\boldsymbol{\theta}}\over r\sin\phi} ={1\over r}\hat {\boldsymbol{\theta}}$ (34)
$\displaystyle \nabla_\theta \hat {\boldsymbol{\theta}}$ $\textstyle =$ $\displaystyle -{\cos\phi\,\hat {\boldsymbol{\phi}} +\sin\phi\,\hat {\bf r}\over r\sin\phi} = -{\cot\phi\over r}\hat {\boldsymbol{\phi}}-{1\over r}\hat {\bf r}$ (35)
$\displaystyle \nabla_\theta \hat {\boldsymbol{\phi}}$ $\textstyle =$ $\displaystyle {\cos \phi \,\hat {\boldsymbol{\phi}}\over r\sin \phi}={1\over r}\cot\phi\,\hat {\boldsymbol{\theta}}.$ (36)


Now, since the Connection Coefficients are given by $\Gamma_{jk}^i =\hat {\bf x}_i\cdot(\nabla_k \hat {\bf x}_j)$,

$\displaystyle \Gamma^\theta$ $\textstyle =$ $\displaystyle \left[\begin{array}{ccc}0 & {1\over r} & 0\\  0 & 0 & 0\\  0 & {\cot\phi\over r} & 0\end{array}\right]$ (37)
$\displaystyle \Gamma^\phi$ $\textstyle =$ $\displaystyle \left[\begin{array}{ccc}0 & 0 & {1\over r}\\  0 & -{\cot\phi\over r} & 0\\  0 & 0 & 0\end{array}\right]$ (38)
$\displaystyle \Gamma^r$ $\textstyle =$ $\displaystyle \left[\begin{array}{ccc}0 & 0 & 0\\  0 & -{1\over r} & 0\\  0 & 0 & -{1\over r}\end{array}\right].$ (39)


The Divergence is
$\nabla\cdot {\bf F} = A^k_{,k}+\Gamma_{jk}^kA^j$
$= [A^r_{,r}+(\Gamma_{rr}^rA^r+\Gamma_{\theta r}^rA^\theta+\Gamma_{\phi r}^rA^\phi]$
$\quad +[A^\theta_{,\theta}+(\Gamma_{r\theta}^\theta A^r+\Gamma_{\theta\theta}^\theta A^\theta+\Gamma_{\phi\theta}^\theta A^\phi)]$
$\quad + [A^\phi_{,\phi}+(\Gamma_{r\phi}^\phi A^r+\Gamma_{\theta\phi}^\phi A^\theta +\Gamma_{\phi\phi}^\phi A^\phi)]$
$= {1\over g_r}{\partial A^r\over\partial r} +{1\over g_\theta}{\partial A^\theta\over\partial\theta} +{1\over g_\phi}{\partial A^\phi\over\partial\phi}+(0+0+0)$
$\quad +\left({{1\over r}A^r+0+{\cot\phi\over r}A^\phi}\right)+\left({{1\over r}A^r+0+0}\right)$
$= {\partial\over\partial r}A^r+{2\over r}A^r+{1\over r\sin\phi}{\partial\over\p...
...}A^\theta+{1\over r}{\partial\over\partial\phi}A^\phi +{\cot\phi\over r}A^\phi,$

(40)
or, in Vector notation,


$\displaystyle \nabla\cdot{\bf F}$ $\textstyle =$ $\displaystyle \left({{2\over r}+{\partial\over\partial r}}\right)F_r + \left({{...
...\over r}}\right)F_\phi + {1\over\sin\phi}{\partial F_\theta\over\partial\theta}$  
  $\textstyle =$ $\displaystyle {1\over r^2}{\partial\over\partial r} (r^2 F_r) + {1\over r\sin\p...
...} (\sin\phi F_\phi) + {1\over r\sin\phi}{\partial F_\theta\over\partial\theta}.$ (41)


The Covariant Derivatives are given by

\begin{displaymath}
A_{j;k}={1\over g_{kk}}{\partial A_j\over\partial x_k}-\Gamma_{jk}^i A_i,
\end{displaymath} (42)

so
$\displaystyle A_{r;r}$ $\textstyle =$ $\displaystyle {\partial A_r\over\partial r}-\Gamma_{rr}^iA_i ={\partial A_r\over\partial r}$ (43)
$\displaystyle A_{r;\theta}$ $\textstyle =$ $\displaystyle {1\over r\sin\phi}{\partial A_r\over\partial\theta}-\Gamma_{r\the...
...
= {1\over r\sin\phi}{\partial A_r\over\partial\theta}-\Gamma_{r\theta}A_\theta$  
  $\textstyle =$ $\displaystyle {1\over r\sin\phi}{\partial A_r\over\partial\phi}-{A_\theta\over r}$ (44)
$\displaystyle A_{r;\phi}$ $\textstyle =$ $\displaystyle {1\over r}{\partial A_r\over\partial\phi}-\Gamma_{r\phi}^iA_i
= {1\over r}{\partial A_r\over\partial\phi}-\Gamma_{r\phi}^\phi A_\phi$  
  $\textstyle =$ $\displaystyle {1\over r}\left({{\partial A_r\over\partial\phi}-A_\phi}\right)$ (45)
$\displaystyle A_{\theta;r}$ $\textstyle =$ $\displaystyle {\partial A_\theta\over\partial r}-\Gamma_{\theta r}^iA_i ={\partial A_\theta
\over\partial r}$ (46)
$\displaystyle A_{\theta;\theta}$ $\textstyle =$ $\displaystyle {1\over r\sin\phi}{\partial A_\phi\over\partial\theta}-\Gamma_{\theta\theta}^iA_i$  
  $\textstyle =$ $\displaystyle {1\over r\sin\phi}{\partial A_\theta\partial\theta}-\Gamma_{\theta\theta}^\phi A_\phi -\Gamma_{\theta\theta}^rA_r$  
  $\textstyle =$ $\displaystyle {1\over r\sin\phi}{\partial A_\theta\over\partial\theta}+{\cot\phi\over r} A_\phi +{A_r\over r}$ (47)
$\displaystyle A_{\theta;\phi}$ $\textstyle =$ $\displaystyle {1\over r}{\partial A_\theta\over\partial r}-\Gamma_{\phi r}^iA_i{\partial A_\theta\over\partial\phi}$ (48)
$\displaystyle A_{\phi;r}$ $\textstyle =$ $\displaystyle {\partial A_\phi\over\partial r}-\Gamma_{\phi r}^iA_i={\partial A_\phi\over r}$ (49)
$\displaystyle A_{\phi;\theta}$ $\textstyle =$ $\displaystyle {1\over r\sin\phi}{\partial A_\phi\over\partial\theta}
-\Gamma_{\...
...\over r\sin\phi}{\partial A_\phi\over\partial\theta}-\Gamma_{\phi\theta}^\theta$  
  $\textstyle =$ $\displaystyle {1\over r\sin\phi}{\partial A_\phi\over\partial\theta} -{\cot\phi\over r}A_\theta$ (50)
$\displaystyle A_{\phi;\phi}$ $\textstyle =$ $\displaystyle {1\over r}{\partial A_\phi\over\partial\phi}-\Gamma_{\phi\phi}^iA_i
={1\over r}{\partial A_\phi\over\partial\phi}-\Gamma_{\phi\phi}^rA_r$  
  $\textstyle =$ $\displaystyle {1\over r}{\partial A_\phi\over\partial\phi}+{A_r\over r}.$ (51)


The Commutation Coefficients are given by

\begin{displaymath}
c_{\alpha\beta}^\mu\vec e_\mu = [\vec e_\alpha,\vec e_\beta] =\nabla_\alpha\vec e_\beta-\nabla_\beta\vec e_\alpha
\end{displaymath} (52)


\begin{displaymath}[\hat{\bf r},\hat{\bf r}]= [{\hat{\boldsymbol{\theta}}},{\hat...
...[{\hat{\boldsymbol{\phi}}},{\hat{\boldsymbol{\phi}}}] ={\bf0},
\end{displaymath} (53)

so $c_{rr}^\alpha = c_{\theta\theta}^\alpha=c_{\phi\phi}^\alpha=0$, where $\alpha =r,\theta,\phi$.
\begin{displaymath}[\hat{\bf r},\hat{\boldsymbol{\theta}}]= -[{\hat{\boldsymbol{...
...t{\boldsymbol{\theta}} = -{1\over r}\hat{\boldsymbol{\theta}},
\end{displaymath} (54)

so $c_{r\theta}^\theta =-c_{\theta r}^\theta =-{1\over r}$, $c_{r\theta}^r =c_{r\theta }^\phi = 0$.
\begin{displaymath}[\hat{\bf r},\hat{\boldsymbol{\phi}}]=-[{\hat{\boldsymbol{\ph...
...}\hat{\boldsymbol{\phi}} = -{1\over r}\hat{\boldsymbol{\phi}},
\end{displaymath} (55)

so $c_{r\phi }^\phi =-c_{\phi r}^\phi ={1\over r}$.
\begin{displaymath}[\hat{\boldsymbol{\theta}},\hat{\boldsymbol{\phi}}]= -[{\hat{...
...{\theta}}-{\bf0} ={1\over r}\cot\phi\hat{\boldsymbol{\theta}},
\end{displaymath} (56)

so
\begin{displaymath}
c_{\theta\phi }^\theta =-c_{\phi\theta }^\theta ={1\over r}\cot\phi.
\end{displaymath} (57)

Summarizing,
$\displaystyle c^r$ $\textstyle =$ $\displaystyle \left[\begin{array}{ccc}0 & 0 & 0\\  0 & 0 & 0\\  0 & 0 & 0\end{array}\right]$ (58)
$\displaystyle c^\theta$ $\textstyle =$ $\displaystyle \left[\begin{array}{ccc}0 & -{1\over r} & 0\\  {1\over r} & 0 &{1\over r}\cot\phi\\  0 & -{1\over r}\cot\phi & 0\end{array}\right]$ (59)
$\displaystyle c^\phi$ $\textstyle =$ $\displaystyle \left[\begin{array}{ccc}0 & 0 & -{1\over r}\\  0 & 0 & 0\\  {1\over r} & 0 & 0\end{array}\right].$ (60)


Time derivatives of the Position Vector are


$\displaystyle \dot{\bf r}$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}\cos\theta\sin\phi\,\dot r-r\sin\theta\sin\...
...eta\cos\phi\,\dot\phi\\  \cos\phi\,\dot r-r\sin\phi\,\dot\phi\end{array}\right]$  
  $\textstyle =$ $\displaystyle \left[\begin{array}{c}\cos\theta\sin\phi\\  \sin\theta\sin\phi\\ ...
...\cos\theta\cos\phi\\  \sin\theta\cos\phi\\  -\sin\phi\end{array}\right]\dot\phi$  
  $\textstyle =$ $\displaystyle \dot r\,\hat{\bf r} + r\sin\phi\,\dot\theta\,\hat{\boldsymbol{\theta}} + r\,\dot\phi\,\hat{\boldsymbol{\phi}}.$ (61)

The Speed is therefore given by
\begin{displaymath}
v \equiv \vert\dot {\bf r}\vert = \sqrt{\dot r^2 +r^2\sin^2\phi\dot\theta^2 + r^2\dot\phi^2}.
\end{displaymath} (62)

The Acceleration is
$\displaystyle \ddot x$ $\textstyle =$ $\displaystyle (-\sin\theta\sin\phi\dot\theta\dot r+\cos\theta\cos\phi\dot r\dot\phi+\cos\theta\sin\phi\ddot r)$  
  $\textstyle \phantom{=}$ $\displaystyle -(\sin\theta\sin\phi\dot r\dot\theta +r\cos\theta\sin\phi\dot\theta^2+r\sin\theta\cos\phi\dot\theta\dot\phi$  
  $\textstyle \phantom{=}$ $\displaystyle +r\sin\theta\sin\phi\ddot\theta)+(\cos\theta\cos\phi\dot r\dot\phi-r\sin\theta\cos\dot\theta\dot\phi$  
  $\textstyle \phantom{=}$ $\displaystyle -r\cos\theta\sin\phi\dot\phi^2+r\cos\theta\cos\phi\ddot\phi)$  
  $\textstyle =$ $\displaystyle -2\sin\theta\sin\phi\dot\theta\dot r+2\cos\theta\cos\phi\dot r\dot\phi-2r\sin\theta\cos\phi\dot\theta\dot\phi$  
  $\textstyle \phantom{=}$ $\displaystyle +\cos\theta\sin\phi\ddot r-r\sin\theta\sin\phi\ddot\theta+r\cos\theta\cos\phi\ddot\phi$  
  $\textstyle \phantom{=}$ $\displaystyle -r\cos\theta\sin\phi(\dot\theta^2+\dot\phi^2)$ (63)
$\displaystyle \ddot y$ $\textstyle =$ $\displaystyle (\sin\theta\sin\phi\ddot r+r\cos\theta\sin\phi\dot\theta+r\cos\phi\sin\theta\dot\phi)$  
  $\textstyle \phantom{=}$ $\displaystyle {} +(\cos\theta\sin\phi\dot r\dot\theta-r\sin\theta\sin\phi\dot\theta^2+r\cos\theta\cos\phi\dot\theta\dot\phi$  
  $\textstyle \phantom{=}$ $\displaystyle +r\cos\theta\sin\phi\ddot\theta)+(\sin\theta\cos\phi\dot r\dot\phi+r\cos\theta\cos\phi\dot\theta\dot\phi$  
  $\textstyle \phantom{=}$ $\displaystyle -r\sin\theta\sin\phi\dot\phi^2+r\sin\theta\cos\phi\ddot\phi)$  
  $\textstyle =$ $\displaystyle 2\cos\theta\sin\phi\dot\theta\dot r+2\sin\theta\cos\phi\dot r\dot\phi +2r\cos\theta\cos\phi\dot\theta\dot\phi$  
  $\textstyle \phantom{=}$ $\displaystyle +\sin\theta\sin\phi\ddot r+r\cos\theta\sin\phi\ddot\theta+r\sin\theta\cos\phi\ddot\phi$  
  $\textstyle \phantom{=}$ $\displaystyle -r\sin\theta\sin\phi (\dot\theta^2 +\dot\phi^2)$ (64)
$\displaystyle \ddot z$ $\textstyle =$ $\displaystyle (\cos\phi\ddot r-\sin\phi\dot r\dot\phi ) -(\dot r\sin\phi\dot\phi +r\cos\phi\dot\phi^2+r\sin\phi\ddot\phi )$  
  $\textstyle =$ $\displaystyle -r\cos\phi\dot\phi^2+\cos\phi\ddot r-2\sin\phi\dot\phi\dot r-r\sin\phi\ddot\phi.$ (65)

Plugging these in gives
$\displaystyle \ddot {\bf r}$ $\textstyle =$ $\displaystyle (\ddot r-r\dot\phi^2)\left[\begin{array}{c}\cos\theta\sin\phi\\  \sin\theta\sin\phi\\  \cos\phi\end{array}\right]$  
  $\textstyle \phantom{=}$ $\displaystyle +(2r\cos\phi\dot\theta\dot\phi +r\sin\phi\ddot\theta)\left[\begin{array}{c}-\sin\theta\\  \cos\theta\\  0\end{array}\right]$  
  $\textstyle \phantom{=}$ $\displaystyle \mathop{+}(2\dot r\dot\phi +r\ddot\phi)\left[\begin{array}{c}\cos...
...\left[\begin{array}{c}\cos\theta\\  \sin\theta\\  0\end{array}\right],\nonumber$  
      (66)

but
$\displaystyle \sin\phi\hat{\bf r}+\cos\phi\hat{\boldsymbol{\phi}}$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}\cos\theta\sin^2\phi
+\cos\theta\cos^2\phi\\  \sin\theta\sin^2\phi +\sin\theta\cos^2\phi\\  0\end{array}\right]$  
  $\textstyle =$ $\displaystyle \left[\begin{array}{c}\cos\theta\\  \sin\theta\\  0\end{array}\right],$ (67)

so
$\displaystyle \ddot {\bf r}$ $\textstyle =$ $\displaystyle (\ddot r-r\dot\phi^2)\hat{\bf r}+(2r\cos\phi\dot\theta\dot\phi +2\sin\phi\dot\theta\dot r+r\sin\phi\ddot\theta )\hat{\boldsymbol{\theta}}$  
  $\textstyle \phantom{=}$ $\displaystyle \mathop{+}(2\dot r\dot\phi +r\ddot\phi )\hat{\boldsymbol{\phi}}-r\sin\phi\dot\theta^2 (\sin\phi\hat{\bf r}+\cos\phi\hat{\boldsymbol{\phi}})$  
  $\textstyle =$ $\displaystyle (\ddot r-r\dot\phi^2-r\sin^2\phi\dot\theta^2)\hat{\bf r}$  
  $\textstyle \phantom{=}$ $\displaystyle + (2\sin\phi\dot\theta\dot r+2r\cos\phi\dot\theta\dot\phi +r\sin\phi\ddot\theta )\hat{\boldsymbol{\theta}}$  
  $\textstyle \phantom{=}$ $\displaystyle \mathop{+}(2\dot r\dot\phi +r\ddot\phi -r\sin\phi\cos\phi\dot\theta^2)\hat{\boldsymbol{\phi}}.$ (68)

Time Derivatives of the Unit Vectors are
$\displaystyle \dot{\hat{\bf r}}$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}-\sin\theta\sin\phi\,\dot\theta+\cos\theta\...
...sin\phi\,\dot\theta\hat {\boldsymbol{\theta}} +\dot\phi\hat {\boldsymbol{\phi}}$  
      (69)
$\displaystyle \dot{\hat{\boldsymbol{\theta}}}$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}-\cos\theta\dot\theta\\  -\sin\theta\dot\th...
...nd{array}\right]=-\dot\theta(\sin\phi\hat{\bf r}+\cos\phi\hat\boldsymbol{\phi})$  
      (70)
$\displaystyle \dot{\hat{\boldsymbol{\phi}}}$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}-\sin\theta\cos\phi\,\dot\theta-\cos\theta\...
...}\right] = -\dot\phi\hat {\bf r} +\cos\phi\dot\theta\hat {\boldsymbol{\theta}}.$  
      (71)


The Curl is
$\nabla\times {\bf F} = {1\over r\sin\phi}\left[{{\partial\over\partial\phi}(\sin\phi F_\theta)-{\partial F_\phi\over\partial\theta}}\right]\hat{\bf r}$
$ + {1\over r}\left[{{1\over\sin\phi}{\partial F_r\over\partial\theta} - {\parti...
...}(rF_\phi) - {\partial F_r\over\partial\phi}}\right]\hat {\boldsymbol{\theta}}.$

(72)


The Laplacian is


$\displaystyle \nabla^2$ $\textstyle \equiv$ $\displaystyle {1\over r^2} {\partial\over\partial r}\left({r^2{\partial\over\pa...
... {\partial\over\partial\phi}\left({\sin\phi{\partial \over\partial\phi}}\right)$  
  $\textstyle =$ $\displaystyle {1\over r^2}\left({r^2{\partial^2\over\partial r^2}+2r{\partial\o...
...\phi{\partial\over\partial\phi}+\sin\phi{\partial^2\over\partial\phi^2}}\right)$  
  $\textstyle =$ $\displaystyle {\partial^2\over\partial r^2} + {2\over r} {\partial\over\partial...
...hi} {\partial\over\partial\phi} + {1\over r^2} {\partial^2\over\partial\phi^2}.$ (73)

The vector Laplacian is


\begin{displaymath}
\nabla^2 {\bf v}=\left[\begin{array}{l}
{1\over r}{\partial^...
...al\phi} -{v_\phi\over r^2\sin^2\theta}}\\
\end{array}\right].
\end{displaymath} (74)


To express Partial Derivatives with respect to Cartesian axes in terms of Partial Derivatives of the spherical coordinates,


$\displaystyle \left[\begin{array}{c}x\\  y\\  z\end{array}\right]$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}r\cos\theta\sin\phi\\  r\sin\theta\sin\phi\\  r\cos\phi\end{array}\right]$ (75)
$\displaystyle \left[\begin{array}{c}dx\\  dy\\  dz\end{array}\right]$ $\textstyle =$ $\displaystyle \left[\begin{array}{c}\cos\theta\sin\phi\,dr-r\sin\theta\sin\phi\...
...a+r\sin\theta\cos\phi\,d\phi\\  \cos\phi\,dr-r\sin\phi\,d\phi\end{array}\right]$  
  $\textstyle =$ $\displaystyle \left[\begin{array}{ccc}\cos\theta\sin\phi & -r\sin\theta\sin\phi...
...nd{array}\right]\left[\begin{array}{c}dr\\  d\theta\\  d\phi\end{array}\right].$  
      (76)

Upon inversion, the result is

\begin{displaymath}
\left[{\matrix{dr\cr d\theta\cr d\phi\cr}}\right]
=\left[{\...
...trix{dx\cr dy\cr dz\cr}}\right].
\hrule width 0pt height 6.1pt
\end{displaymath} (77)

The Cartesian Partial Derivatives in spherical coordinates are therefore
$\displaystyle {\partial\over\partial x}$ $\textstyle =$ $\displaystyle {\partial r\over\partial x}{\partial\over\partial r} +{\partial\t...
...\over\partial\theta} +{\partial\phi\over\partial x} {\partial\over\partial\phi}$  
  $\textstyle =$ $\displaystyle \cos\theta\sin\phi {\partial\over\partial r} - {\sin\theta\over r...
...l\over\partial\theta} + {\cos\theta\cos\phi\over r} {\partial\over\partial\phi}$  
      (78)
$\displaystyle {\partial\over\partial y}$ $\textstyle =$ $\displaystyle {\partial r\over\partial y} {\partial\over\partial r} + {\partial...
...over\partial\theta} + {\partial\phi\over\partial y} {\partial\over\partial\phi}$  
  $\textstyle =$ $\displaystyle \sin\theta\sin\phi {\partial\over\partial r} + {\cos\theta\over r...
...l\over\partial\theta} + {\sin\theta\cos\phi\over r} {\partial\over\partial\phi}$  
      (79)
$\displaystyle {\partial\over\partial z}$ $\textstyle =$ $\displaystyle {\partial r\over\partial z} {\partial\over\partial r} + {\partial...
...over\partial\theta} + {\partial\phi\over\partial z} {\partial\over\partial\phi}$  
  $\textstyle =$ $\displaystyle \cos\phi {\partial\over\partial r} - {\sin\phi\over r} {\partial\over\partial\phi}$ (80)

(Gasiorowicz 1974, pp. 167-168).


The Helmholtz Differential Equation is separable in spherical coordinates.

See also Colatitude, Great Circle, Helmholtz Differential Equation--Spherical Coordinates, Latitude, Longitude, Oblate Spheroidal Coordinates, Prolate Spheroidal Coordinates


References

Arfken, G. ``Spherical Polar Coordinates.'' §2.5 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 102-111, 1985.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 212, 1987.

Gasiorowicz, S. Quantum Physics. New York: Wiley, 1974.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, p. 658, 1953.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26